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Abstract
How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and
applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the
classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition
from projective to weak measurement in generic light–matter interactions and show that any classical electron-laser-
beam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical
point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal
factor, exp �Γ2=2

� �
, quantifies the measurement regimes and their transition from quantum to classical, where Γ

corresponds to the ratio between the electron wavepacket size and the optical wavelength. This measurement-based
formulation is experimentally verified in both limits of photon-induced near-field electron microscopy and the classical
acceleration regime using a DLA. Our results shed new light on the transition from quantum to classical
electrodynamics, enabling us to employ the essence of the wave-particle duality of both light and electrons in
quantum measurement for exploring and applying many quantum and classical light–matter interactions.

Introduction
Measurement lies at the heart of quantum mechanics

and allows one to probe a quantum system of interest
through a measuring pointer (an apparatus) coupled to the
system’s observables. The interaction between the system
and pointer is later classically amplified for the outcome to
be seen macroscopically. However, in the context of
light–matter interactions, sometimes either the measured
system or measuring pointer (or both) can be well treated
with classical means, i.e., without invoking quantum
formalism. These interactions are usually modelled by
classical or quantum electrodynamics, with a wealth of
widely explored effects and both theoretical and experi-
mental schemes such as photon-induced near-field

electron microscopy (PINEM)1–5 or dielectric laser accel-
erator (DLA)6–8. All these inspire our current exploration.
We show that there is a continuous transition from
quantum to classical interactions between electrons and
photons, which can be illustrated when examining several
prototypical scenarios of the measurement in experimental
settings. Previously, it was demonstrated that post-selection
and weak measurements can provide insights regarding the
boundary between classical and quantum regimes9. Here,
we approach this subject from a more concrete, experi-
mental perspective. For this purpose, we analyze theoreti-
cally and experimentally the PINEM discrete sideband
spectrum (some recent work can be found, e.g., in2,3,10, but
they only addressed the case of coherent light) as well as
the DLA acceleration spectrum and show that their spec-
trum implies the wave-particle duality of free electrons
when interacting with light. We wish to investigate the
various regimes when electrons and photons are coupled to
classify in which cases they can be regarded as ‘classical’ or
‘quantum’ measuring pointers. In particular, we study the
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transition process between the two regimes. In light of the
current experimental capabilities of manipulating electrons
and photons, the quantitative wave-particle duality of
electrons and the quantum-to-classical transitions of pho-
tons are both controllable in ultrafast transmission electron
microscopy (UTEM)1,4,11 and in quantum light prepara-
tion12, respectively. In the wavepacket representation with
electron wavepacket size (Δz), the point-particle-like
(‘classical’) picture of free electrons can be defined in the
limit Δz ! 0 and conversely, the plane-wave-like (‘quan-
tum’) picture in the opposite limit Δz ! 1. Similarly, the
photon state holds its own quantum-to-classical transition.
For concreteness, the single-photon-added coherent state
enables us to continuously tune the photon system from a
coherent state (representing quantum states in their ‘clas-
sical’ limit) to a single Fock number state (which we take as
a uniquely ‘quantum’ state)12,13. Note that, indeed, the
coherent state delineates the border regarding the classi-
cality and quantumness of photon states from different
perspectives14. We thus define a parameterized photon
state as the basis for possible investigation of the fuzzy
border that may separate the ‘quantum’ from ‘classical’
regimes in the above sense, utilizing the coupling with a
single electron wavepacket as a measuring pointer. (We
note that the above characterization of classical and
quantum states is explicitly tailored to the analysis of
interactions between free electrons and photons. Indeed,
other notions of classicality could be found in literature).
To be specific, we represent the ‘quantum-to-classical’

transition of photon states using the photon-added
coherent state and the ‘particle-to-wave’ electron state
using a Gaussian wavepacket. The initially prepared
photon and electron states are respectively given by

jα; νi ¼ ayð Þν jαiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν!Lν � αj j2ð Þp

jψi ¼ R dp cð0Þp jpi
ð1Þ

The photon-added coherent state reduces to the limit of
Fock or coherent state for the parameters α ! 0 or ν ! 0,
respectively, with Lν being the Laguerre polynomial of
(integer) order ν, ay is the photon creation operation, and
all other photon indices are suppressed for simplicity.
Such a photon state was theoretically proposed by
Agarwal and Tara13 and later experimentally realized by
Zavatta et al. 12. The normalized Gaussian component of
a free electron wavefunction is

c 0ð Þ
p ¼ 2πΔ2

p

� ��1=4
expð� p� p0ð Þ2=4Δ2

pÞ

with Δp the unchirped momentum uncertainty, and p0 the
average momentum, respectively. Note that the electron
wavepacket is only defined in a longitudinal dimension

(1D), where the electron’s initial momentum distribution

is readily obtained as ρ 0ð Þ pð Þ ¼ c 0ð Þ
p

��� ���2. Following the

standard procedure of measurement proposed by von
Neumann15, we can study the quantum-to-classical
transitions of free electron–photon interactions. As
always, the coupling introduced by the von Neumann
measurement Hamiltonian creates a variable-strength
entanglement between the systems, which allows one to
make inferences about one when subjecting the other to a
projective measurement. As a testing bed of this
measurement-based approach, we shall classify the
possible interactions as shown in Fig. 1b–e: (I) A classical
point-particle electron coupling with ‘classical’ photon
coherent state; (II) a classical point-particle electron
coupling with ‘quantum’ photon Fock state; (III) a
quantum plane wave electron coupling with classical
photon; and (IV) a quantum plane-wave electron coupling
with quantum photon.

Next, we assume that the coupling between the classical
electron (Δz ¼ 2Δp

! 0) and the classical photon (ν ! 0

but α≠ 0) can be simplified into the canonical Hamilton
equations _z ¼ p=γ0m; _p ¼ eEc cos ωt � qzz tð Þ þ ϕ0ð Þ,
which in Newtonian mechanics describe a charged point-
particle (�e) moving in the presence of a monochromatic
traveling electromagnetic field (laser, or microwave field)
with an electric component E ¼ Ec cos ωt � qzz tð Þ þ ϕ0ð Þ
having the optical frequency ω and the z component of
the wave vector qz along the propagation direction. With
the short-time approximation zðtÞ ¼ v0t, we expect that
the point-particle momentum transfer can be thus

reduced to Δppoint ¼ �eEcL=v0 sinc θ
2

� �
cos θ

2 þ ϕ0

� �
, in

which the synchronization condition (also called phase
matching condition) is θ ¼ ω=v0 � qzð ÞL, L is the inter-
action length and v0 is the initial velocity of the electron.
This is the well-known linear acceleration formula in
classical accelerator physics, as well as in the inverse
Smith–Purcell effect16, or the dielectric laser accelerator
(DLA)6,7 and free electron lasers10. In addition, it indicates
that the emergence of ‘classicality’ in our measurement
setup requires both the classical conditions of ‘point-
particle-like’ electron and photon at a coherent state, as
shown in Fig. 1b.
This classical acceleration formula offers a hint of how

to quantum-mechanically measure the electromagnetic
field operators (e.g., the vector potential A) via a moving
electron wavepacket as a measuring pointer coupled to
the measured photonic system. It will be shown how to
calculate the classical particle acceleration within the von
Neumann measurement scheme15 as a result of the
electron–photon coupling. From the perspective of weak
measurement17, we will see below that the momentum
transfer of the pointer after interaction corresponds to the
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weak value of the vector potential (A) of the photonic
system. This applies to the configuration of a classical
electron pointer coupled to a classical photon system
(Fig. 1b). In the other three configurations, the
electron–photon couplings indicate a quantum (strong)
projective measurement. As a result, the system-pointer
measurement inevitably falls into the ‘strong’ category
involving a significant momentum change with a sub-
sequent ‘wavefunction collapse’, regardless of whether the
electron or photon state falls in the quantum regime
(Fig. 1c–e). The classification of four measurement
regimes will indicate in the following sections how only a
quantum weak measurement can lead to classical particle
acceleration (Figs. 1b and 2a), thereby possibly implying,
in general, how classical electrodynamics may emerge
from a full quantum treatment.
Additionally, in the transition from weak to projective

mee coupling between the classic measurements, we
notice that the identities of electron and photon
are reciprocal in the following sense: which is the system
and which is the pointer depends on the detection and
post-selection configuration of electrons and photons.

This underlying reciprocity leads to the system-pointer
duality that will be discussed towards the end of this work.
The main novelty of the work relies on the presentation

of a unified scheme for analyzing interactions between
photons and free electrons, addressing both their classical
and quantum regimes, as well as the interesting quantum-
to-classical transition. The proposed scheme employs tools
from quantum measurement theory and therefore makes it
easy to draw the line between weak and strong (projective)
measurements in light–matter interactions. In particular,
two limits of our theoretical prediction are experimentally
tested here with recent UTEM11 and DLA18 setups.
The rest of the manuscript is organized as follows. In

the next two sections, we differentiate between the four
basic types of electron–photon couplings, addressing inter
alia the emergence of point-particle trajectories. We then
analyze the expectation-valued electron spectrum and
weak-valued spectrum in our measurement transition
theory and find that the classical electron momentum
transfer can be viewed as an outcome of a weak mea-
surement in the next two sections. We then verify our
theoretical predictions using experimental results
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Fig. 1 The quantum and classical measurement schemes of free electron–photon interactions. a We treat these light–matter interactions
using the tools and terminology of measurement theory. In this respect, the measuring pointer is the outgoing electron, and the measured system is
the pre-prepared photon state (without post-selection), with a coupling strength g between the system and the pointer. b–e Four combinations of
free electron and photon interactions are schematically presented in the classical and quantum measurement regimes, corresponding to the various
initial states of the electrons and photons. The readout of the measuring pointer is the electron energy loss spectrum (EELS). The classical photon (CP)
in a coherent state and quantum photon (QP) in a Fock state are defined as two opposite limits of the photon-added coherent state jα; νi, where
ν ¼ 0 and α ¼ 0, respectively. The classical electron (CE) and quantum electron (QE) are defined as the wavepacket representations in the point-
particle and plane-wave limits, respectively (all possibilities are quantitatively described in Eq. (1))
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obtained in UTEM and DLA setups. Finally, we address
the advances of post-selection in light–electron interac-
tions and further clarify the significance of classical-to-
quantum transitions in our measurement-based theory.

Classical photons in a coherent state
Our analysis of measurement is based on the pertur-

bative solution of the relativistically modified Schrödinger
equation10,19–21 for a free electron wavefunction and a
quantized radiation field. Following the standard QED
treatment (see the SI file), we expand the initial wave-
function in terms of the quantum continuous numbers p
of the electron state and the Fock number-occupation

state of the photon, which is given by jii ¼P
p;ν c

0ð Þ
p;νe�iEpt=jp; νi, where c 0ð Þ

p;ν is the component of the

combined basis jp; νi ¼ jpiN jνi.
The net energy transfer as the pointer shift in the

electron spectrum is obtained in first-order perturbation

theory as ΔE ¼Pp;ν c 0ð Þ
p;ν þ c 1ð ÞðeÞ

p;ν þ c 1ð ÞðaÞ
p;ν

��� ���2 Ep � E0
� �

where the initial electron energy E0 ¼
P

p;ν c 0ð Þ
p;ν

��� ���2Ep
10–12.

In our quantum treatment of the initial electron–photon

state as given by c 0ð Þ
p;ν ¼ c 0ð Þ

p c 0ð Þ
ν , we consider the initial

electron wavepacket of the unchirped Gaussian

distribution (Eq. 1) combined with a coherent photon

state, where ν0 ¼
P

ν ν c 0ð Þ
ν

�� ��2 is the total photon number.
Substituting into the formula (ΔE), one can obtain the

explicit energy transfer with two parts (ΔE ¼ ΔEð1Þ þ
ΔEð2Þ)9:

ΔE 1ð Þ ¼ ΔEpointe�
Γ2
2

ΔE 2ð Þ ¼ �eϒ2
ω sinc2 θ

2

� � ð2Þ

where ΔEpoint ¼ v0Δppoint ¼ �eEcL sinc θ
2

� �
cos θ

2 þ ϕ0

� �
and the normalized photon exchange coefficient of

spontaneous emission is defined as eϒ ¼ eeEqL=4ω, corre-

sponding to the PINEM near-field factor as g ¼ 2
ffiffiffiffiffi
ν0

p eϒ
(see the SI file). Note that the relation

ffiffiffiffiffi
ν0

p ¼
h ffiffiffiffiffi

ν0
p jaνj ffiffiffiffiffiν0p i is taken for the coherent state (j ffiffiffiffiffiν0p i). A
significant pointer-specific extinction parameter e�Γ2=2 is
found in the phase-dependent energy transfer (2), with a
decay parameter given by

Γ ¼ 2π
β

Δz

λ

� 	
¼ ω

v0Δp
ð3Þ

with β ¼ v0=c. The extinction parameter demonstrates
that it is the pre-interaction history-dependent
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Fig. 2 Illustration of four measurement regimes of free electron–photon interactions in phase-space representation. The electrons are
presented using Wigner functions corresponding to the specified measurement cases as shown in Fig. 1. a Classical electron (CE) interacts with a classical
photon (CP) (point-particle Δz � λ; and coherent state jαi); b CE interacts with a quantum photon (QP) (Δz � λ; and Fock state jνi); c quantum
electron (QE) interacts with a CP (plane-wave Δz � λ; jαi); d QE interacts with a QP (Δz � λ; jνi). Crucially, among them, only the case a “CE+ CP” gives
rise to the weak measurement and classical point-particle trajectory in electrodynamics. One can obtain the net transfer as a weak value and observe the
emergent classical electron dynamics obeying a classical trajectory with a certain position and momentum in phase space, as shown in (a)
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wavepacket size of a free-electron wavepacket that has a
physical effect in its interaction with coherent light and
acts as the measuring pointer.
Now, we are able to discuss quantitatively the classical

point-particle and quantum plane-wave limits of electron
wavepacket energy transfer in the interaction with the
quantized photon state of light, as shown in Fig. 1b, d. The
particle-to-wave transition of the electron–photon interac-
tion in measuring electron energy loss spectroscopy (EELS)
is shown in Fig. 2a. The appearance of ‘classicality’ corre-
sponds to the case where the photon distribution becomes a
coherent state describing the ‘classical’ electromagnetic field,
and the condition e�Γ2=2 ! 1 is satisfied, which means that
the electron wavefunction looks like a point-like particle
with wavepacket size smaller than the wavelength: Δz � λ
(“narrow” electron). Indeed, the wavepacket-dependent
transfer when the wavepacket size is comparable to the
wavelength is given by ΔE ¼ ΔEpointe�Γ2=2. Therefore, it
explains the emergence of classical point-particle trajectory
in the free electron–photon setup of “CE+CP”. The decay
parameter (Γ) implies the measurability of the electron
wavepacket size near the classical particle-like regime.
On the other hand, the plane-wave limit of electron can

be directly defined as e�Γ2=2 ! 0 in which case the energy
transfer has only the contribution of the phase-

independent term (ΔEð2Þ), as shown in Fig. 2c. Note that
even in the classical limit, the phase-independent term
still has a universal non-vanishing noise contribution in
the form of vacuum fluctuations. This phase-independent

term (ΔEð2Þ) relates to the vacuum expectation value,
which acts as quantum noise of spontaneous fluctuation
in our electron–photon coupling measurements10,20.

Therefore, the phase-dependent term (ΔEð1Þ) reduces to
the classical particle acceleration but is measurable only if
the spontaneous vacuum fluctuation is negligible:

ΔEð1Þ � ΔEð2Þ under ν0 � 1.

Quantum photon in a Fock state
In contrast, the single Fock state of light corresponds to

the photon-added coherent state (Eq. 1), obeying the
condition α ! 0, i.e., c 0ð Þ

ν ¼ δν;ν0 . When inspecting the
wavepacket energy transfer expression, it appears that,
similarly to the case of spontaneous emission, there is no
Fock state stimulated energy transfer due to the ortho-
gonality relations hν0jaνjν0i ¼ hν0jayν jν0i ¼ 0. Therefore,

one obtains the total energy transfer, ΔE ¼ ΔEð1Þ þ
ΔEð2Þ ¼ �eϒ2

ω sinc2 θ
2

� �
. There is no stimulated radiative

interaction as a result of the coupling to the quantum
light (radiation wave) in Fig. 1c, e. However, this is not
very surprising since the initial single Fock state (jν0i) is
orthogonal to the emitted and absorbed photon state

(jν0 ± 1i), so the first-order phase-dependent interference
term has no contribution. Therefore, the phase-space
descriptions of an electron interacting with a quantum
light source, depicted in Fig. 2b, d present either
momentum broadening (in the classical electron case) or
distinct quantum sidebands (in the quantum electron
case), without the contribution of quantum interference
between photon sidebands depicted in Fig. 2c in the case
of classical light quantum electron case22. This is a result
of quantum entanglement between two different Fock

states. Note that the second term (ΔEð2Þ) still produces the
wavepacket-independent spontaneous vacuum fluctua-
tions as an inevitable source of quantum noise in the
observation of EELS in the quantum light case20, same as
in the case of classical light (Eq. 2).

Weak measurement versus projective measurement
Let us focus now on the EELS observation of the final

electron wavefunction after the interaction. When a quan-
tum electron pointer is coupled to the photon system, the
photon-induced outgoing electron momentum distribution
is then given by integrating out all photonic degrees of

freedom that is, ρ fð ÞðpÞ ¼Pν c 0ð Þ
p;ν þ c 1ð ÞðeÞ

p;ν þ c 1ð ÞðaÞ
p;ν

��� ���2. Let
us find the EELS measurement pictures in the two afore-
mentioned limits.

First, in the point-particle limit Δz � λ 19,23, necessarily,
the initial momentum distribution exceeds the quantum
momentum recoil Δp >ω=v0 and hence the final
momentum distribution after interaction with the classi-
cal photon is: ρ fð Þ

C pð Þ ¼ ρ 0ð Þðp� Δpð1ÞÞ, where the
momentum shift is Δpð1Þ ¼ Δppointe

�Γ2=2 (also corre-
sponding to the energy transfer ΔEð1Þ in Eq. 2). As shown
in Fig. 3b, c, the emission and absorption terms overlap
with the initial wavepacket momentum distribution and
contribute the asymmetrical interference effects with
opposite sign, which leads to the momentum shift in the
classical point-particle regime. The final momentum dis-
tribution of the electron pointer is then reshaped, dis-
playing a net momentum shift of small acceleration, as
shown in Fig. 3b, c, where we ignore the spontaneous
term in the weak-field coupling eEcL=ω<1. Except for the
universal transition factor e�Γ2=2, the acceleration/decel-
eration of the electron wavepacket depends on the syn-
chronism detuning parameter θ and the relative phase ϕ0,
similar to a charged point-particle moving in the presence
of a classical electromagnetic field (Δppoint) in the classical
limit of interaction between ‘particle-like’ electron and
‘classical’ photon (Figs. 1b and 2a). This interaction pic-
ture of electron–photon coupling leads to the classical
measurement or classical electrodynamics and also to the
weak measurement, as displayed in Fig. 3b.
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Next, in the plane-wave (quantum electron) limit Δz �
λ, corresponding to the large recoil condition Δp <ω=v0
(i.e., the criterion of projective measurement), the inter-
ference terms between sidebands diminish, and the scat-
tered components dominate, resulting in a final PINEM-
kind spectrum of the momentum distribution, as shown

in Fig. 3d, e: ρ fð Þ
Q pð Þ ¼ 1� 2ϒ2sinc2 θ

2

� �� �
ρ 0ð Þ pð Þ þ

ϒ2sinc2 θ
2

� �
ρ 0ð Þ p� ω=v0ð Þ þ ρ 0ð Þðpþ ω=v0Þ
� �

where ϒ ¼
eEcL=4ω and we ignore the spontaneous contribution to
the emission term with the approximation ν0 � 1. The
last two scattering terms represent symmetric photon-
sideband spaced by ω=v0 on both sides of the central
momentum p0 of the wavepacket as displayed in Fig. 3e.
This quantum measurement result is the same as the
multiple sidebands electron energy gain/loss spectrum in
PINEM experiments, in which the higher-order sidebands
relate to multiple-photon emission and absorption
processes1,2.

For the Fock state of the photon system, the phase-
dependent interference terms disappear due to the
orthogonality and thus lead to the same final projective
momentum distribution as the measurement in the plane-
wave limit of electron (with coherent light), regardless of

the electron’s wavefunction profile in the classical or
quantum limit. For the other three electron–photon
couplings in Fig. 1c–e, either quantum electron or
quantum photon corresponds to the final projective
momentum distribution with no net momentum transfer
Δp ¼ R

ρ fð Þ pð Þp dp ¼ 0 (i.e., ΔE ¼ 0), which implies no
classical measurement for these three system-pointer
interaction configurations.

Is the net energy transfer a weak value?
As demonstrated in Fig. 3b, d, we find that the projec-

tive measurement15 corresponds to the electron spectrum
with discrete photon-sidebands of PINEM (Fig. 3d), and
the weak measurement17 to the acceleration spectrum
with central momentum shift (Fig. 3b). Moreover, the
energy/momentum transfer is proportional to the classi-
cal electric field given by E ¼ � ∂A=∂th i in the Coulomb
gauge ∇ � A ¼ 0. Our results seem to depend on the gauge
choice of the vector potential A, but in our case, it is just
A¼ R E dt, i.e., completely defined by the physically
gauge-independent electric field (up to a meaningless
integration constant). Such gauge independence was
shown to arise when performing a weak measurement of
the vector potential and measuring the Berry phase24,25.
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Fig. 3 Quantum-to-classical measurement transition of the electron wavepacket pointer when coupled to a photon coherent state.
b, c Under the coupling condition with a narrow electron Δz � λ, the photon sidebands overlap, and its asymmetric interference would result in a
redistribution of the final electron spectrum with a net momentum transfer. d, c In contrast, under the condition with wide electron Δz � λ, these
sidebands are distinctly separated, resulting in a spectrum that is discrete. a The two limits of particle-like (b, c) and wave-like (d, e) pictures of the
electron pointer in light–matter interactions correspond to the classical (weak) measurement (particle accelerator) and quantum (projective)
measurement (PINEM), respectively. The exact expressions of the final momentum distributions are presented in the text
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Thus, the classical point-particle acceleration is an effec-
tive weak value of the vector potential in the formalism of
weak measurement,

Δppoint / Aw � hβ; ν0jAjα; νi
hβ; ν0jα; νi ð4Þ

where the pre- and post-selected photon states are both
defined as photon-added coherent states (1). Note that
this definition of the vector-potential weak value is
applicable only if there is no time evolution of the photon
system (except for the measurement process) or, effec-
tively, in short-time approximation. Two typical examples
are considered with fixing the pre-selection and post-
selection at the ‘classical’ or ‘quantum’ photon state,
respectively: jα; νi ¼ jβ; ν0i ¼ j ffiffiffiffiffiν0p

; 0i ¼ j ffiffiffiffiffiν0p i (Fig. 1b,
c); jα; νi ¼ jβ; ν0i ¼ j0; ν0i ¼ jν0i (Fig. 1d, e). Also, these
examples correspond to the electron energy transfers
(i.e., Eq. 2), as we discussed in the previous two sections.

Now we describe the electron coupling process with a
classical-like photon system in the scheme of weak mea-
surement17,26, which is given by

hβ; ν0j|fflffl{zfflffl}
post�selection

T exp � i
ZL=v0
0

HIðtÞdt

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
electron�photon coupling

jα; νi � jψi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
pre�selection

¼ hβ; ν0j 1þ ie
γ0m

RL=v0
0

AðtÞ � p dt
 !

jα; νi � jψi

¼ hβ; ν0jα; νi � ψ z þ e
γ0m

RL=v0
0

AwðtÞdt
 !�����

+
¼ e�jβ�αj2=2jψðz � ΔzÞi

where we employed the relation hβ; 0jα; 0i ¼ e� β�αj j2=2 for
coherent states with real numbers α; β. The measuring
electron pointer is assumed to be a Gaussian wavepacket
in coordinate space (z) corresponding to its momentum
component (Eq. 1, i.e., jψi). The final spatial shift of the
electron pointer is thus Δz ¼ � e

γ0m

R L=v0
0 Aw tð Þdt and the

corresponding momentum transfer is approximated
instantaneously as Δp ¼ γ0m

Δz
Δt

� � ¼ �eAw, which con-
firms the equivalence between the quantum wavepacket
momentum transfer in the point-particle limit and the
time-averaged weak value of vector potential in the short-
time approximation.
At this point, we would like to mention that our

measurement-based theory of electron–photon interac-
tions are one-dimensional. However, our assumptions
regarding the electron and light fields can be extended
toward a three-dimensional QED model in which the
transverse profiles of both the electron wavepacket and
light field are incorporated. In such as description, the

spin and orbital angular momentums of both electrons
and photons would have a profound role and could lead
to new effects, e.g., 27,28. (Note that the weak value Aw is,
in general, a complex number. Conceptually, weak values
appear to suggest an approach to describing quantum
systems with two boundary conditions (pre- and post-
selection), see e.g., 26,29. However, Aw is real in our case
because the photon state is a coherent state, an eigenstate
of the vector potential, thus, we expect that Aw ¼
2RefAð�Þg, where Að�Þ are negative and positive fre-
quency components of the vector potential, respectively).

Experimental verification
To verify the two measurement limits from quantum to

classical, let us compare our theory with specific experi-
mental results of PINEM in a UTEM and electron spectra
in DLA. The two setups are depicted in Fig. 4a, b (see
also11,18,30,31). Let us clarify that from the point of view of
our theoretical one-dimensional model, there is no differ-
ence between the prism-based setup (see the inset of
Fig. 4c) and the periodic rod structures of Fig. 4b. The
relevant classical light field Eðz; tÞ is in the first case the
evanescent near field of the laser-illuminated dielectric
prism, and, in the second case, a slow-wave space harmonic
of a Floquet mode in the periodic rods of the DLA struc-
ture. The derived extended electron–photon interaction is
the same in both setups as long as the electron and the wave
are synchronized or slightly desynchronized with the same
detuning parameter θ 10. Here we mention recent work22,32

that, from a different view of photons, studied the quantum-
to-classical transition of the photon statistics of quantum
light sources on free-electron–light interactions in a UTEM
setup with the DLA device. Notice that femtosecond light
pulses are employed instead of a continuous-wave laser, and
indeed, the letter may benefit from three features. First, the
application of the UV pulse generates an ultrashort electron
pulse. Second, the duration of the IR pulse controls well the
effective interaction time of the electron–photon coupling.
Third, the femtosecond pulses allow us to fine-tune the
delay between the electron pulse and the IR pulse.
In the first case (Fig. 4a), the measured spectrum of the

interacting wide electron wavepacket depicts a pattern of
multiple discrete sidebands with ω spacing. This is
explained in terms of PINEM theory in the multiphoton
coupling regime (Section E in the SI file). Indeed, the width
of the measured spectrum with the discrete photon side-
bands can be extended to the range of 1 keV and shows no
net linear acceleration, even in the case of extremely strong
field and non-perturbative laser–electron interaction.
We compare the interaction with the prism in Fig. 4a to

the interaction with the second periodic rod structure (the
analyzer) in Fig. 4b. The crucial difference is that in the
latter case, the electrons arrive at the interaction region in
a density-modulated state: The optical near-fields in the
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first periodic rod structure (the modulator) led to an
energy modulation without net energy transfer. This,
together with the free drift of the electron wavepackets,
generates a train of attosecond-bunched electrons when
they arrive at the analyzer (see also18). The periodically
bunched electrons display a minimal bunch duration of
~1.1 fs, which is smaller than the synchronized optical
cycle (6.45 fs). Hence, this situation corresponds to an
optical system interacting with a train of electron-
measuring pointers. In this case, the analyzer can per-
form a weak measurement of the optical field system
when the modulator pre-bunches the electrons, and thus,
classical acceleration is expected for the bunched elec-
trons, as shown in Fig. 4d. We can interpret this as a weak
measurement of the optical field system as proposed

above. The right panel of Fig. 4d shows the linear
dependence of the energy gain as a function of the ana-
lyzer’s field strength for the optimally bunched electrons.
We can interpret this as the modulator creating a tran-
sition from projective to weak measurement. Further-
more, like in the DLA setup, we can suggest an extended
PINEM experiment to have two-stage near-field interac-
tions phase-matched such that the first stage produces
attosecond bunching at the second stage, where then a
large transfer may also be observed. We explain how the
pre-bunched electron pulses in the PINEM regime can
constitute a weak measurement in the Supplementary
Information (Figs. S1–S3 in the SI file). Additionally,
spectrograms of the modulated electron density as a
function of delay time are given in Fig. S4.
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Post-selection on electrons or photons
Let us discuss the post-selection of the electron–photon

states after interaction in terms of measurement theory.
Two types of ‘weak-valued’ electron–photon couplings
are schematically shown in Fig. 5. In the reciprocal
system-pointer setup of light–matter interaction, the
electron can be the measured system, and the photon is
then the measuring pointer. If we are able to pre- and
post-select the electron wavefunction, detection of the
photon radiation rate (Δν) then leads to a shift of the
photon pointer, being the measuring pointer, as compared
to the measurement of the momentum operator of the
electron. In a recent work10,20, the reciprocal relation
between photon radiation and electron acceleration is
demonstrated to be Δν þ ΔE=ω ¼ 0, which brings a cor-
respondence between the electron spectrum and photon
spectrum that conserves the photon exchange in all
measurement schemes. This ‘acceleration/radiation cor-
respondence’ (ARC) relation20 connects the final mea-
surements of the photon and electron spectrum with/
without post-selection as a demonstration of the ‘system-
pointer’ dualism. This setup of weak measurements
resembles the pre- and post-selection of atomic states
coupled with photons, as proposed recently by Aharonov
et al. 33.
Note that our quantum-to-classical measurement the-

ory is entirely different from the environment-induced
decoherence program34–36. Decoherence theory, in which
the ‘classicality’ emerges from the natural loss of quantum
interference by ‘leakage’ into the environment34, does not
comprise the contributions of quantum interference and
would neither yield wavepacket-dependent energy trans-
fer nor periodic density bunching in the attosecond scale
as in37–39. Likewise, the environment-induced deco-
herence cannot produce the classical linear particle
acceleration. (Unlike projective measurements, weak
measurements maintain the coherence of quantum
states40,41. Therefore, one would naively expect that the
results agreeing with classical intuition would be obtained
in a strong projective measurement after averaging overall

outcomes. For instance, the average position of a quan-
tum harmonic oscillator in a coherent state reproduces
the evolution of a classical harmonic oscillator. In our
analysis, we have also demonstrated quantum-to-classical
transitions in weak measurements).

Conclusion
Four kinds of measurement setups of electron–photon

interactions were considered in detail, loosely corre-
sponding to ‘classical electron–classical photon’, ‘classical
electron–quantum photon’, ‘quantum electron–classical
photon’, and ‘quantum electron–quantum photon’. We
captured all these interaction types using our unified
framework of measurement transition theory, defining all
the physics above as a consequence of weak measurement
or projective measurement. Then, the transition process
was characterized by a universal factor e�Γ2=2, which could
quantitatively verify our measurement theory in any
experiment exhibiting light–matter interactions. Fur-
thermore, our work experimentally reveals the continuous
transition from weak to projective measurements, which
can also explain the quantum-to-classical transition in
common schemes like DLA and PINEM. Future research
of these processes may also address structured waves
(either light or matter, classical or quantum) as well as
additional sources of quantum light and potentially
supercontinuum light pulses42,43.
In addition, we identified the classical linear point-particle

acceleration as the weak value of the vector potential and
connected it with the appearance of ‘classicality’ in quantum
mechanics. This indicates that weak measurements not only
reveal ‘anomalous’ quantum features of quantum physics
but also surprisingly describe classical characteristics in the
realm of classical electrodynamics. The weak value of the
vector potential under suitable pre- and post-selections
offers a compelling theoretical framework for investigating
the interaction between electron wavefunctions and quan-
tum light sources, such as the superposition of Fock states
or squeezed states of light22,32. In a recent paper44, we have
considered, both theoretically and experimentally, the
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Fig. 5 The weak-valued electron–photon interaction with pre-/post-selection on photons and electrons. The pre- and post-selections are
performed on (a) the photons or (b) the electrons as the measured system, and the rest acts as the measuring pointer in quantum-to-classical
measurement schemes

Pan et al. Light: Science & Applications          (2023) 12:267 Page 9 of 11



weak-to-strong transition of quantum measurements in
trapped ions as a consistent extension of our theoretical
framework to generic system-pointer interactions.

Methods
UTEM setup
The measurement of PINEM spectra is conducted on

a laser-excited right-angle prism sitting in an ultrafast
transmission electron microscope (UTEM). The
experimental setup is detailed and described in the
previous report11. Briefly, the UTEM (JEOL-2100P) is
operated in nano-beam diffraction (NBD) mode with a
70 µm condenser aperture and 207.2 kV electron
acceleration voltage for small and parallel electron
probes. The right-angle prism (BK7 glass, n= 1.512 at
730 nm wavelength) is placed on a TEM holder inside
UTEM, with one of its right-angle faces aligned parallel
to the electron beam. To generate the light evanescent
field on the prism face, a 730 nm laser beam from a
pump femtosecond laser system (Light Conversion) is
coupled to the UTEM from a transparent port through
an in-column mirror, and finally incident on the prism.
Such beam yields phase-matching of electron and eva-
nescent field with a Cherenkov angle of 19.8° In one
acquisition, photon-excited electron wave-packets are
produced from a cathode illuminated by ultraviolet
femtosecond laser pulses from frequency conversion of
the pump laser and interact with the evanescent field.
Their energy spectra are captured by an electron energy
loss spectrometer (EELS) with many minutes of inte-
gration time. By changing the delayed time of electron
and laser pulses, the two-dimensional map showing the
evolution of the interaction as a function of time is
revealed in Fig. 4c.

DLA setup
The ballistic bunching is measured in an ultrafast

scanning electron microscope. The pulsed electron beam,
triggered from a standard Schottky-emitter by a 167 kHz
frequency quadrupled Ytterbium fiber laser, focused to
sub-100 nm to enter the channel of the first DLA struc-
ture, the modulator. The DLA structures are fabricated
from silicon single crystals via deep reactive ion etching
(DRIE). The structures tailor the near field when illumi-
nated by the same fiber laser, upconverted to ~2 μm
wavelength via an optical parametric amplifier system, to
be synchronous with the electrons. The near field inter-
acts in the modulator with the flying electrons and
modulates their energy sinusoidally. The subsequent drift
between the two structures causes ballistic bunching due
to the non-relativistic electrons having different velocities.
The spatial distribution is probed in the second structure,
the analyzer. The near field of the analyzer interacts with
the modulated attosecond-bunched electrons, which leads

to a net energy transfer. Finally, the energy transfer is
revealed with a magnetic spectrometer. More details can
be found in18,30.
The theoretical modelling, calculations, Supplementary

Figs., and data are available in the SI file.
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