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Abstract: A large number of applications in classical and quantum photonics require the
capability of implementing arbitrary linear unitary transformations on a set of optical modes. In
a seminal work by Reck et al. [Phys. Rev. Lett. 73, 58 (1994)], it was shown how to build such
multiport universal interferometers with a mesh of beam splitters and phase shifters, and this
design became the basis for most experimental implementations in the last decades. However,
the design of Reck et al. is difficult to scale up to a large number of modes, which would be
required for many applications. Here we present a deterministic algorithm that can find an exact
and efficient implementation of any unitary transformation, using only Fourier transforms and
phase masks. Since Fourier transforms and phase masks are routinely implemented in several
optical setups and they do not suffer from some of the scalability issues associated with building
extensive meshes of beam splitters, we believe that our design can be useful for many applications
in photonics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The ability to arbitrarily transform an optical mode has applications spanning communications,
imaging, and information processing. General variable control of modal unitary transformations
has numerous applications across optics, ranging from fiber optic communications [1–3] to
information proccessing with optical networks [4] and imaging [5–7]. In the area of quantum
information, arbitrary unitary transformations will be used in quantum cryptography [8],
simulation of quantum systems with random walks [9,10], quantum information processing with
qudits [11,12], quantum neural networks [13], quantum computing with photonic waveguide
modes [14] or boson sampling [15].

An optical mode transformation that is lossless and linear is described by a unitary matrix U,
mapping a basis of N input modes onto a basis of N output modes. Since any such matrix has N2

free parameters, a method for its implementation must have at least N2 controllable parameters,
which is an experimentally challenging scaling. One implementation method is based on optical
Fourier transforms (FT) [16–18]. In this paper, we show that only N2 controllable parameters are
needed to implement an arbitrary unitary transformation on N modes using FTs. What is more,
unlike previous methods, which were optimization based, we introduce a deterministic algorithm
to design an arbitrary unitary transformation based on this method.

In a seminal paper [19], Reck et al. gave a prescription to implement any unitary on an array
of modes by using a triangle-shaped lattice of beamsplitters interleaved with phase shifters. A
more compact square lattice was proposed and implemented by Clements et al. [20]. Since
these first works, implementations have been shown in a range of integrated optical platforms
[21–23]. Photonic circuits with up to 642 controllable parameters have been demonstrated [24],
and a fully programmable arbitrary unitary acting on N = 12 waveguides has been realized
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[25,26]. However, the fabrication and control complexity associated with this method makes it
challenging to implement larger unitaries.

Before these integrated optical implementations, a different approach was based on a lens
or curved mirror. These enact an approximate FT of the spatial field distribution [27]. Using
these, a unitary is decomposed into a series of FTs interleaved with phase shifters [16–18], as
shown in Fig. 1. The phase shifters are varied to implement a given unitary, whereas the FTs
do not change. A series of experiments using multiple reflections from a curved mirror and a
phase-shifting spatial light modulator array (SLM) successfully demonstrated a variety of unitary
transformations [16,18]. Fourier transforms can also be realized for other types of modes, for
instance waveguides modes and spectral temporal modes, in an efficient manner [28–30].

Fig. 1. In this work we show that any linear unitary transformation between N channels can
be implemented by means of a succession of 6N + 1 phase masks (diagonal operators) and
6N Fourier transforms.

The FT method is the focus of this paper. In particular, we give a deterministic algorithm to find
the requisite phase shifts in the FT method. Rather than using the full continuous FT, we use the
discrete Fourier transform (DFT). While there is an existence proof showing that a unitary could
be decomposed into a sequence of FTs alternating with phase shifters [31], there is no prescription
for doing so with a sequence of realizable length. Previous work [32,33] has provided methods
to decompose an arbitrary complex matrix as a sequence of Fourier transforms and non-unitary
diagonal matrices. However, since their prescriptions require non-unitary diagonal matrices, they
cannot be implemented using phase masks. That said, an optimization algorithm to determine
these phase shifts, wavefront matching, was recently introduced and experimentally validated
[34]. While practical, iterative optimization has a number of drawbacks for the FT method: 1.
The output of the algorithm is just an approximate solution. 2. It does not prescribe the design
parameters. Thus, it is unknown what is required to achieve a unitary of a given dimension, level
of optical loss, or amount of error. 3. Relative to the Reck et al. deterministic algorithm, it is
computationally slow. Consequently, there is a need for the deterministic algorithm we introduce
here.
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2. Decomposition method

Any lossless linear transformation on a closed system of N optical modes is described by a
unitary matrix U ∈ UN(C). Reck et al. showed that any unitary transformation between optical
modes can be implemented as a lattice of beam splitters [19], a multiport interrferometer. A
beam splitter is an optical element that mixes two modes i and j according to unitary matrix
T(θ, ϕ) ∈ UN(C) parametrized by two angles ϕ, θ ∈ [0, 2π)

⎛⎜⎝
[T(θ, ϕ)]ii [T(θ, ϕ)]ij
[T(θ, ϕ)]ji [T(θ, ϕ)]jj

⎞⎟⎠ := ⎛⎜⎝
eiφcos(θ) −sin(θ)

eiφsin(θ) cos(θ)
⎞⎟⎠ . (1)

It acts as the identity matrix on all the other channels. An arbitrary beam splitter Tij(θ, ϕ) can
be factorized in the following way

⎛⎜⎝
eiφcos(θ) −sin(θ)

eiφsin(θ) cos(θ)
⎞⎟⎠ = X ⎛⎜⎝

eiθ 0

0 1
⎞⎟⎠X ⎛⎜⎝

eiφ 0

0 1
⎞⎟⎠ , (2)

where X represents a 50-50 beam splitter, i.e., X := 1√
2
⎛⎜⎝
1 1

1 −1
⎞⎟⎠. Hence, one only needs

controllable phase shifters and fixed 50-50 beam splitters to build the lattice of beam splitters
designed by Reck et al.

Instead of a beamsplitter-based method, here we investigate a factorization method based on
Fourier transforms. As a starting point, we consider the Discrete Fourier Transform (DFT),
whose action is described by a unitary matrix whose elements are given by Fjk =

1√
N

ei2πjk/N .
Our design is built as a succession of Fourier transforms and phase masks, as depicted in Fig. 1:

U = D(0)
L∏︂

i=1
FD(i). (3)

The phase masks
{︁
D(i)}︁

i∈{0,..,L} are the only element in this setup that we need to control.
Each phase mask on N modes is described by a diagonal matrix parametrized by N angles,
D(i)

jk = eiα(i)
j δjk. Thus, one needs at least N of them to construct an arbitray unitary with its N2

parameters such as the Reck multiport interferometer.
We present a way to find a decomposition of an arbitrary unitary matrix in the form displayed

in Eq. (3), consisting of L + 1 = 6N + 1 unitary diagonal matrices and 6N DFT matrices. In our
factorization method, we start from the decomposition into beam splitters given in [20], i.e. a
mesh of beam splitters arranged in N consecutive layers:

U = D
N/2∏︂
i=1

N/2−1∏︂
k=1

T2k(χ
(i)
k , η(i)k )

N/2∏︂
j=1

T2j−1(θ
(i)
j , ϕ(i)j ), (4)

where Tj(θ, ϕ) is a beam splitter mixing channels j and j + 1. As pointed out above in Eq. (2), any
beam splitter can be implemented with two 50-50 beam splitters and two phase shifters. Therefore,
the design of [20] can be viewed as a succession of 50-50 beam splitters and phase masks. The
procedure to translate this into a composition of phase masks and DFT’s is schematically depicted
in Fig. 2. In a nutshell, our decomposition builds on this by factoring each layer of 50-50 beam
splitters in the mesh as a product of Fourier transforms and phase masks.

In the following, we will show how to decompose a given unitary U by prescribing the seven
distinct phase masks in Fig. 2 (E, Γ(ϕ), H, Γ(θ), G, Γ(η) and Γ(χ)) that are required by each bilayer.
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Fig. 2. Any unitary matrix can be realized by a mesh of beam splitters, as described in [20].
Our decomposition method is based on replacing each layer of beam splitters by a succession
of discrete Fourier transforms and phase masks, as schematically depicted here at the top.
Each layer of beam splitters requires six Fourier transforms (grey rounded rectangles) and 6
phase-mask diagonal matrices (coloured rectangles). Only two diagonal matrices per layer
(red and yellow rectangles) depend on the unitary matrix that is being implemented, while
the rest (blue rectangles) are fixed. The general expression for the phase masks is given in
Eqs. (7), (8), and (11).

In the decomposition displayed in Eq. (4), each term of the form
∏︁N/2−1

k=1 T2k(χ
(i)
k , η(i)k ) represents

a layer of beam splitters connecting each even channel 2j with the odd channel 2j + 1 (mod N),
whereas each term

∏︁N/2
j=1 T2j−1(θ

(i)
j , ϕ(i)j ) represents a layer of beam splitters connecting each

even channel 2j with the odd channel 2j − 1 (mod N). It is convenient to relabel the indices as
{0, 1, 2, 3, . . .} →

{︁
0, N

2 , 1, N
2 + 1, . . .

}︁
. We see that U can also be decomposed as a succession

of layers of beam splitters such that in the odd layers each beam splitter connects each channel
j ∈ {N/2, . . . , N − 1} with the channel j − N/2, whereas in the even layers each beam splitter
connects the channel j ∈ {N/2, . . . , N − 1} with the channel j − N/2 + 1 (mod N

2 ).
The odd layers can be written as XΞ(i)1 XΞ(i)2 , where Ξ(i)1 ,Ξ(i)2 are diagonal matrices. The even

layers have the same structure as the odd layers after a cyclic shift of the first half of the channels.
Thus, each even layer can be expressed as PTXΩ(i)

1 XΩ(i)
2 P, where Ω(i)

1 ,Ω(i)
2 are also diagonal

matrices, and P is the permutation matrix given by

Pjk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 k = j + 1 (mod N

2 ), j ≤
N
2 − 1

1 k = j, j>N
2 − 1

0 otherwise.
(5)

It follows that any unitary matrix admits the following decomposition

U = D
N/2∏︂
i=1

N/2−1∏︂
k=1

PTXΩ(i)
1 XΩ(i)

2 P
N/2∏︂
j=1

XΞ(i)1 XΞ(i)2 .
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At this point, we still need to decompose X and P as a product of phase masks and Fourier
transforms. We start by factorizing them into products of circulant and diagonal matrices. A
circulant matrix is a matrix such that each row is obtained by applying a cyclic shift by one slot
to the right to the previous row. Since any circulant matrix is diagonalized by the DFT matrix F,
a product of circulant and diagonal matrices can always be re-expressed as a product involving
only F, F† and diagonal matrices.

Define the diagonal matrix G := ⎛⎜⎝
I 0

0 iI
⎞⎟⎠ and the circulant matrix Y := 1√

2
⎛⎜⎝

I −iI

−iI 1
⎞⎟⎠. First,

we note that X = GYG. Second, the permutation matrix P can be factorized as a product of three
circulant matrices and four diagonal matrices:

P =
1
√

2
X ⎛⎜⎝

C + I C − I

C − I C + I
⎞⎟⎠X,

where C is the cyclic shift matrix C = δj,j+1 (mod N/2) of size N
2 × N

2 . Thus, we have shown how to
decompose any unitary U as a product of diagonal and circulants. By diagonalizing the circulants,
we immediately obtain a factorization of U involving only F, F† and diagonal matrices. But the
inverse of the DFT matrix is just F† = ΠF = FΠ, where Π is the permutation matrix

Πjk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 j = k = 0
1 j = N − k
0 otherwise.

Since ΠDΠ is diagonal whenever D is diagonal, we can decompose U using only F and
diagonal matrices.

In the end, diagonalizing all the circulant matrices we obtain the following expression

U = DG

[︄N/2∏︂
i=1

B(i)A(i)

]︄
G†, (6)

where the terms B(i), A(i) are given by

B(i) =
{︂
E, p (G) , H, Γ(χ(i)), E, p

(︂
GΓ(η(i))

)︂}︂
F

, (7)

A(i) =
{︂
E, G, H, p

(︂
Γ(θ(i))

)︂
, E, GΓ(ϕ(i))

}︂
F

, (8)

where we made use of the notation {D1, . . . , DN}F :=
∏︁N

i=1 FDi. The diagonal matrices E, H are
defined as

Ejj =
1
√

2

[︁
1 − i (−1)j

]︁
, (9)

Hjj =
1
2
[︁
1 − (−1)j

]︁
+

1
2
[︁
1 + (−1)j

]︁
ei2πj/N , (10)

and the diagonal matrix Γ(v) is defined as a function of a real vector v ∈ RN/2:

[Γ(v)]jj :=

{︄
eivj j<N

2 − 1
i j ≥ N

2 − 1
. (11)

Finally, p : UN → UN is just the map p(U) := ΠUΠ. Note that when applied on a diagonal ma-
trix, it just inverts the order of the diagonal entries after the first one: p (diag(a0, a1, . . . , aN−1)) =
diag(a0, aN−1, . . . , a1).
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In summary, our procedure to create any unitary U using phase masks and DFTs is based on
using Eqs. (7) and (8) to express a unitary according to Eq. (3). First, we permute the channels of
the unitary as described above, which corresponds to computing the matrix UP = PTUP, with P
being the permutation matrix of Eq. (5). Then, we find the decomposition of UP as a lattice of
beam splitters by the procedure described in Clements et al. [20]. That is, we find the parameters{︁
(χ(i), η(i), θ(i), ϕ(i))

}︁
i={0,...,N/2−1} for each lattice layer i such that UP is factorized in the form of

Eq. (4). The procedure for finding these parameters is explained in [20], but the general idea is to
null, one by one, all the off-diagonal elements of UP by means of an appropriate succession of
beam splitters. We then apply these parameters

{︁
(χ(i), η(i), θ(i), ϕ(i))

}︁
i as phase masks along with

other fixed phase masks, all interleaved with DFTs, to replace layer i. In Fig. 2, we indicate all
seven different diagonal matrices (e.g., phase masks), E, H, G, p(G), and Γ(v) (labelled by the
value of v = χ, η, θ, and ϕ), at the location of their application within one layer i of our method.
All the control parameters are contained in the diagonal matrices Γ(v), whereas the rest of the
diagonal matrices are fixed. In summary, applying the structure in Fig. 2 in place of each the
N/2 beamsplitter lattice layers results in an implementation of an arbitrary unitary using only
phase masks and Fourier transforms.

We should observe that fabrication imperfections can pose a serious challenge in the case of
large photonic circuits. In any implementation of our scheme, some form of fine-tuning may be
required in order to correct for such fabrication imperfections. Several proposals for efficient error
correction already exist in the case of meshes of MZIs [35,36], but we leave their generalization
to the FT method for future work. Nevertheless, we remark that a deterministic solution is always
a good starting point for fine-tuning. Even a strategy based on parameter shifting may be enough
if the deviation from the intended behaviour is small.

3. Implementation of the DFT

Our approach requires the capability to optically perform the DFT. While the standard continuous
FT is routinely approximated in optical setups [28,37,38], implementing the DFT is nontrivial.
There are some proposals to realize the DFT based on AWGs [39], star couplers [40,41] and other
devices for orthogonal frequency division multiplexing [42,43]. These devices can couple each
input mode to each output mode with equal strength. In order to realize a true DFT, one also
has to match the complex phase of each entry of the transmission matrix, which is a non-trivial
problem. Moreover, many of these architectures are complicated compound photonic devices
themselves.

Here we discuss one possible procedure to optically compute the DFT that is based on the
phenomenon of self-imaging inside a multimode waveguide [44]. The idea of using multimode
intereference (MMI) couplers to realize the DFT is not new, and it was first proposed in [45].
However, their prescription uses an 2N × 2N MMI coupler to output two copies of the N
dimensional DFT on half of the input modes, which is not amenable to our goal. Here we
describe a method to implement the DFT on N modes with an N × N MMI coupler, using all N
modes. As it only needs a rectangular planar waveguide and phase shifts, we believe that our
proposal could be easily scaled to a large number of modes. In fact, the idea of programming
arbitrary unitaries in a rectangular dielectric has attracted recent interest [46]. Another previous
work has also considered the possibility of implementing programmable unitaries as a cascade of
MMIs and phase layers, but did not include an explicit prescription for doing so. [47].

Consider a planar waveguide of width w and index of refraction n. We parametrize the
transversal coordinate as x and the longitudinal coordinate as z. Let us assume hard wall boundary
conditions, so that it supports guided modes of the form ψn(x) = sin(kxnx), where kxn =

π(n+1)
w .

Furthermore, let us assume that the length of the waveguide is much larger than its width. Then,
in the paraxial limit we can approximate kzj = nk0 − k2

xj/2nk0, where k0 := 2π
λ .
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Consider now that at z = 0 we input a wavepacket f (x − xin
j ) centered at xin

j . For simplicity, let

us assume that xj :=
(︂
j + 1

2

)︂
w
N , for some integer j ∈ {0, . . . , N − 1}. This defines a vector basis

for our target DFT matrix in terms of N wavepacket modes. Under the assumptions listed above,
it has been shown in [44] that when the propagation length is set to be equal to zN =

2nk0
πN w2, the

output field is given by

Eout(x) =
1
√

N

N−1∑︂
k=0

eiχjk f
(︁
x − xout

k
)︁
. (12)

In other words, the output field is a superposition of N repetitions of the input wavepacket
at N distinct positions and weighted by complex phases. The wavepackets f

(︂
x − xout

k

)︂
define

the output mode basis, where xout
j =

(︂
N − j − 1

2

)︂
w
N , and the complex phase weights compose a

unitary matrix, Sjk := 1√
N

eiχjk . In [44] these weights were shown to be

Sjk =

{︄ 1√
N

ei π
4N (k−j)(2N−k+j)+iζ0 ifj + k is even

1√
N

ei π
4N (k+j+1)(2N−k−j−1)+iζ0 ifj + k is odd,

(13)

where ζ0 := −k0zN − π
4 . It is straightforward to check that in fact the unitary matrix S is nothing

else than the DFT matrix left and right multiplied by a diagonal matrix and a permutation matrix

S = RT
ΘFΘR, (14)

where the permutation matrix R and the diagonal matrix Θ are given by

Rjk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 j ≤ N/2 and 2j − k − 1 = 0
1 j>N/2 and 2j + k − 2N − 2 = 0
0 otherwise

,

Θjj := ei π
4N

⌊︂
j+1
2

⌋︂2
−i ζ0

2 +iπ
⌊︂

j+1
2

⌋︂
.

Equation (14) implies a possible optical implementation of the DFT. The setup would consist of
a planar multimode waveguide with length zN coupled to N input channels and N output channels as
in Fig. 3. For an input field Ein =

∑︁N−1
j=0 ajf

(︂
x − xin

j

)︂
, the output field is Eout =

∑︁N−1
j=0 ãjf

(︂
x − xout

j

)︂
,

where the coefficients of the output are related to the coefficients of the input by ã = Sa.
Consider that we want to implement an arbitrary unitary matrix U directly using such an

MMI. Let us define the unitary matrix UR = RURT . We can use the previous results to find its
factorization, UR = D(0) ∏︁L

i=1 FD(i). Then, writing F in terms of S using Eq. (14), the unitary
matrix U can be factorized as U = D̃(0) ∏︁L

i=1 SD̃(i), where we have defined the new diagonal
matrices D̃(0) := RTD(0)Θ∗R, D̃(i) := Θ∗RTD(i)RΘ∗, i = 1, . . . , L − 1, and D̃(L) := Θ∗RTD(L)R.
Note that all matrices D̃(i) are indeed diagonal matrices, since R is just a permutation matrix and
Θ is also diagonal. In summary, to use such an MMI in place of an exact DFT one simply needs
to modify the L + 1 = 6N + 1 phase-masks in our method.

The simplicity of our scheme for implementing the DFT comes at the cost of a relatively large
footprint. In our scheme, the length of the slab waveguide scales linearly with N. Hence the
overall area of the fully programmable unitary with O(N) DFTs scales like O(N3). As a side
remark, we observe that there are plenty of applications for an optical implementation of the
DFT or other operations involving the composition of a few DFTs (such as a convolution) [41].
For those transformations that require only O(1) DFTs, our scheme could still result in a very
compact photonic circuit.
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Fig. 3. We show that free propagation inside a multimode slab waveguide can be used
to realize the DFT (here, a 6 × 6 DFT). When a wavepacket is injected, the output at a
suitable distance is a superposition of N copies of the wavepacket weighted with complex
phases, representing the DFT of the input field (modulo phase shifts and permutation of input
and output modes). Thus, a combination of free propagation inside such waveguides and
controllable phase masks is enough to realize arbitrary unitary transformations. In the plot, we
show the phase and the amplitude of the electric field inside the MMI, E(x, z) = A(x, z)eiθ(x,z)

(the amplitude has been normalized so that the maximum is Amax = 1. The phase is
represented by the color, while the amplitude is represented by the pixel intensity.)

This idea is not limited to optical modes in multi- mode waveguides. In fact, any physical
system with confined modes of the form ψn(x) = sin(kxnx) and a parabolic dispersion relation

ωj = ℏ
k2

j
2m can be used to realize the DFT. In this case, instead of propagating modes in a

waveguide we consider a wavefunction that evolves inside a rectangular well according to the
Schrödinger equation. We start with an input field of the form ϕ(x, t = 0) =

∑︁N
j=1 ajϕ(x − xin

N−j+1).
Now, the state at any time is given by ϕ(x, t) =

∑︁
n cneiωj tψn(x). For free propagation, the

dispersion relation is parabolic. Consequentially, all the mathematical expressions are formally
equivalent to the ones that describe multimode interfer- ence in a waveguide. In particular, one
could apply this protocol to neutral atoms confined in an optical trap. Indeed, it is now possible
to realize arbitrary 1d potentials in optical traps for neutral atoms, and in particular one can
realize a rectangular well potential [48].

4. Conclusion

With this result there is now an analytical, and deterministic procedure to design an implementation
of an arbitrary unitary transformation. An even dimension unitary requires 6N DFTs and 6N+1
controllable phase masks. Thus, the scaling of the number of layers with the dimension is optimal,
up to an overall constant factor. We have also described the first practical method to implement a
DFT in integrated optics and even in systems outside optics, such as ion traps. We expect these
results to be useful in a variety of classical and quantum information applications in photonics
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using various optical degrees of freedom including frequency-time, orbital angular momentum,
and position-momentum.
Disclosures. The authors declare no conflicts of interest.
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