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Abstract: The ability to completely characterize the state of a system is an essential element for
the emerging quantum technologies. Here, we present a compressed-sensing-inspired method
to ascertain any rank-deficient qudit state, which we experimentally encode in photonic orbital
angular momentum. We efficiently reconstruct these qudit states from a few scans with an
intensified CCD camera. Since it only requires a small number of intensity measurements, our
technique provides an easy and accurate way to identify quantum sources, channels, and systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The orbital angular momentum (OAM) of single photons, which provides an unbounded vector
space, has been recognized as a preeminent platform for encoding both quantum [1–3] and
classical [4, 5] information. Although the generation of photons with OAM is relatively simple,
the full characterization of a state in the OAM Hilbert space stands as a challenging task. Several
methods have demonstrated accurate projective measurements to determine OAM states [6–11].
However, these projective measurements work adequately only for pure states. The case of mixed
states requires full state tomography, and this involves projective measurements on arbitrary
superpositions of two or more OAM eigenstates [12], a task which remains challenging.

To circumvent these problems, we propose and experimentally demonstrate a method inspired
by compressed sensing. Originating from the context of classical signal processing [13, 14], this
technique harnesses prior assumptions about the state to reconstruct it from an undersampled set
of measurements. It is routinely used to estimate vectors or matrices from incomplete information,
with applications in many diverse fields of research [15, 16]. Compressed sensing has also been
adapted as a tool for state tomography of discrete systems in quantum theory [17–24].
The primary goal of our scheme for reconstructing OAM states is to significantly reduce the

number of z-axis scans (Z) given an a priori value of the mode rank s. We shall demonstrate
that intensity measurement with only a small Z (thus giving nZ number of linearly independent
detection outcomes) is sufficient to unambiguously reconstruct OAM states of low rank s, which
constitutes our main result. Actually, the compressed sensing algorithms, supplemented with
the positivity constraint [25], which operates as a kind of regularization, enables us to construct
informationally complete measurements that are robust to noise and modeling errors. In other
words, one can use a very simple setup for the characterization of a state with a priori information
about its nature.
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2. Setting the scenario

We begin our analysis by recalling a few basic concepts that we will need to understand the
technique. We are dealing with single photons carrying OAM, which has made this degree
of freedom an ideal candidate for the investigation of complex quantum phenomena and their
applications. For this reason, we describe the OAM modes in a quantum parlance, although
everything can be immediately translated into a classical framework.

In any tomographic protocol, one infers the state, represented by the density matrix %, from the
distinct outcomes of a collection of measurements performed on identical copies of the system.
The outcomes of these measurements are given by the Born rule pα = Tr(%Πα), where {Πα} is
the positive operator-valued measure (POVM) describing the setup [26]. We denote the action of
the POVM by A : % 7→ p, that maps % onto the vector containing all the probabilities {pα}.

A POVM is informationally complete (IC) when the corresponding outcome probabilities are
sufficient to determine an arbitrary state [27, 28]. Obviously, the number of outcomes of any
IC measurement is at least d2, where d is the dimension of the system, which makes traditional
methods infeasible as d increases. However, if we know a priori that the rank of the system
fulfills rank(%) ≤ s, with s � d, then we can substantially reduce the number of measurement
samples required to uniquely reconstruct the unknown signal matrix. It has been shown that
for any map A, the so-called restricted isometry property [29] (which characterizes matrices
that are nearly orthonormal, at least when operating on sparse vectors is sufficient to yield a
unique rank-s reconstruction: the true state %0 is then the only density matrix within the set of
positive Hermitian matrices of any rank that yields the measurement probabilities p [25]. The
corresponding estimator %̂ for %0, based on collected statistical data, is given by

%̂ = min
%
‖A[%] − p‖ subject to % ≥ 0 , (1)

whose solution can be efficiently found by convex programming [30].
The insights into the regularizing effect of the positivity constraint permit us to tackle

reconstructing OAM quantum states. To represent the structure of the transverse field we will be
using the well-known Laguerre-Gauss (LG) modes that can be written as [31],

LGp`(r, φ, z) = 〈r, φ, z | `, p〉 =
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where (r, φ, z) denote cylindrical coordinates, k is the wave number, L |` |p (.) is the generalized
Laguerre polynomial, ` ∈ {0,±1,±2, . . .} is the azimuthal mode index, and p ∈ {0, 1, 2, . . .} is
the radial mode index, which is related to the number of radial nodes. The parameters R(z), w(z),
and ψp`(z) denote the radius curvature of the wave fronts, the beam radius, and the Gouy phase
at the propagation distance z, respectively:

w2(z) = w2
0
[
1 + (z/zR)

2] ,
R(z) = z

[
1 + (zR/z)2

]
, (3)

ψp`(z) = (2p + |` | + 1) arctan(z/zR),

with the Rayleigh range zR = kw2
0/2 and w0 the beam waist, which we assume located at z = 0.

In what follows, we will set p = 0 and denote ψ`(z) = ψp=0 `(z).
We propose to reconstruct the signal in the LG basis from Z intensity scans registered by a

CCD camera positioned at distances z1, z2, . . . , with respect to the beam waist, which is in the
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spirit of the Gerchberg-Saxton algorithm [32]. This amounts to projecting the density matrix on
free-space position eigenstates; viz,

p(r, φ, z) = 〈r, φ, z |%|r, φ, z〉 =
∑̀
,`′

LG`,0(r, φ, z) %``′ LG∗`′,0(r, φ, z) ∝ e−2r2
∑̀̀
′

%``′ C``′, (4)

where
C``′ = r |` |+ |`

′ | exp[i(` − `′)φ] exp{i[ψ`(z) − ψ`′(z)]}, r(z) = r/w(z). (5)

Each combination of r , φ, and z coordinates, which corresponds to the associated pixel readings,
gives us one particular linear combination of density matrix elements. Evidently by varying r, φ,
and z, the more linearly independent these generated combinations are, the more IC the POVM is.

3. Informational completeness of intensity scans

The aim of compressed sensing is to perform a set of IC POVM measurement outcomes to
uniquely reconstruct the unknown state %. In our context of twisted-photon state reconstruction,
the POVM refers to the set of CCD intensity scans along the propagation axis. In this section,
we shall analytically demonstrate that a few CCD scans shall be needed to unambiguously, and
thus compressively, reconstruct an arbitrary d-dimensional state under various conditions on
the angular momentum quantum number `. To simplify the details as much as possible, we will
ignore statistical noise and take p(r, φ, z) to represent the raw data. We also assume there are no
limits on sampling in r and φ coordinates.

First, we consider d-dimensional signals represented by LG beams with nonnegative azimuthal
indexes only ` ∈ {0, 1, · · · , d − 1}. We will show that a single CCD scan provides complete
information about the signal. In this case (for a fixed z) one can ignore the Gouy’s phase.
Obviously, incompleteness arises whenever two different pairs (`′, `′′) generate the same C`′`′′
for all r and φ. Since for `′, `′′ ≥ 0, we have |`′ | − |`′′ | = `′ − `′′, there just cannot be two such
pairs both satisfying `′ − `′′ = N and `′ − `′′ = M with the same N and M and incompleteness
does not arise. Hence, all density matrix elements can be uniquely determined from a single
CCD scan for any dimension d of our system.

When the sign of the topological charge is not constrained, the space dimension is d = 2`max+1,
so that ` ∈ {−`max, · · · , 0, · · · , `max}. Now, the CCD scans are no longer IC no matter how many
planes Z are sampled. Indeed, incompleteness arises when two or more elements C`′`′′ coincide
for all r , φ and z. This requires

|`′ | − |`′′ | = N , `′ − `′′ = M , |`′ | − |`′′ | = S , (6)

to hold for two or more distinct pairs (`′, `′′). For every 0 < n ≤ `max one finds two such
realizations: `′, `′′ = n and `′, `′′ = −n and as a result states |`〉 and | −`〉 cannot be discriminated
by intensity measurements alone. As there are `max such cases, the maximum number of linearly
independent measurements generated by CCD scans in dimension d is

nZ→∞ = 4`max
2 + 4`max + 1 = d2 − 1

2 (d − 1) . (7)

For large dimensions d2 � d and the measurement setup becomes nearly complete.
Let us explore how the set of independent detections builds up. For a single plane, the Gouy’s

phase and hence relation (6) are of no consequence. The number of independent detections
equals the number of distinct couples (N, M) that can be generated by −`max ≤ `

′, `′′ ≤ `max. It
can be checked that for a given N , each pair of nonnegative indexes `′, `′′ ≥ 0, |`′ | + |`′′ | = N
generates a unique (N, M). Negative `′, `′′ < 0 do not add new entries to this set. Finally, there
are only two possible Ms for all pairs with opposite signs M = `′ − `′′ = `′ + (−`′′) = ±N .
When N ≤ `max these are already accounted for by `′ = 0, `′′ = N and `′ = N , `′′ = 0 appearing
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Fig. 1. Simulation of our compressed sensing protocol with twisted photons. (a) Number
of independent detections nZ generated by Z intensity scans along the propagation axis
performed on a signal with `max = 7 (d = 15). The maximum of nZ = 218 detections
is obtained for Z ≥ 8 scans. (b) Reconstructions errors, ε̄, from the compressed sensing
protocol of the twisted photons as a function of the rank of the state for a fixed dimension
(`max = 7) and for Z = 1, 2, and 3 CCD scans, with and without positivity constraint. (c)
The reconstructions errors for two CCD scans and different dimensions. In all the cases, we
take a 19 × 19 pixels screen.

in the set of nonnegative pairs. When N > `max, the values M = ±N make new entries. This
gives

∑N
`′=0

∑`max
`′′=0 δ`′′,N−`′ = N + 1 entries for N ≤ `max and 2 +

∑`max
`′=N−`max

∑`max
`′′=0 δ`′′,N−`′ =

2`max − N + 3 entries for N > `max. Taking sum over N = 0 . . . 2`max this makes a total of

nZ=1 = `max
2 + 4`max + 1 = 1

4 (d
2 + 6d − 3) (8)

independent detections generated by a single intensity scan—about a quarter of the maximum
number of independent detections (7).
Going further, we realize that each couple (N, M) is degenerate; i.e., can be generated by

at least two distinct pairs (`′, `′′), except for (N = 0, M = 0), and (N = `max, M = ±`max). In
addition, degenerate (N > 0, M = 0) cannot be resolved by additional scans, as we have already
discussed. Hence, the second scan adds ∆nZ=2 = `max

2+4`max+1−(3+`max) = `max
2+3`max−2

additional independent detections, bringing the total for two scans to

nZ=2 = 2`max
2 + 7`max − 1 = 1

2 (d
2 + 5d − 8) . (9)

For higher Z , the new independent detections grow linearly with `max. A typical behaviour
is shown in Fig. 1(a) for `max = 7: the maximum nZ→∞ is approximately attained with 8
scans. Actually, the minimum scans required to approximately attain the maximum number of
independent detections in the signal space is Zmin = `max + 1.
The compressive tomography is done by solving (1), where now α = {r, φ, z}, and Πα is

defined by Tr(%Πα) = p(r, φ, z). We first perform numerical simulations to explore the method.
A set of random states of a given rank in the `max = 7 space is chosen and scanning measurements
are simulated for Z = 1, 2, and 3 CCD planes with a 19 × 19 pixel geometry.
The data is subject to state reconstruction with and without the positivity constraints, where

the latter is implemented with the help of the Moore-Penrose pseudoinverse [33]. Finally, for
each true state, the corresponding Hilbert-Schmidt distances between the true and reconstructed
states are calculated and the mean is taken over the set of true states of the same rank [34]. We
take this as the error ε̄ = E[Tr(%true − %̂)

2].
In Fig. 1(b), we have plotted the errors ε̄ as a function of the rank of the state, for `max = 7. We

observe a strong regularizing effect of the positivity constraint, especially on low-rank signals.
First, positivity always makes the reconstruction errors smaller. Second, it cures the informational
incompleteness of the tomography, provided the complexity of the measured signal stays below a
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Fig. 2. Sketch of the experimental setup. A photonic state is generated by manipulating the
phase and intensity of an incoming beam via the spatial light modulator (SLM). The beam is
then focused using a variable holographic lens imprinted on the SLM together with the state
generation hologram. The ICCD camera has a fixed position and records intensity scans.
Inset shows the state and lens phase patterns, [0, 2π), in a hue color.

certain threshold. Last, this threshold gets increased as we collect more scans. Notice though that
protocols with positivity perform worse on more complex signals because the regularizing effect
of positivity weakens. Loosely speaking, in comparing neighbourhoods of low- and high-rank
states, one finds more nonphysical matrices in the former. Those objects get filtered by the
positivity constraints leading to improved performance. The opposite is true of the protocols
without positivity. Here, the more mixed states are less biased in the space of density matrices,
so their average distance to the reconstructed matrix is smaller. Notice that this discussion
does not apply to mutually compatible observations, for which positivity constraints are of no
consequence. This can be observed in Fig. 1(c) for a single scan, where the regularizing effect of
positivity disappears. Stronger incompatibilities introduced by detections from different planes
[Πα,Πα′] , 0 are required to promote signal sparsity. The influence of the signal dimension
with a fixed measurement is also illustrated in Fig. 1(c), for the particular case of two scans. The
quality of the compressive OAM tomography improves with the signal dimension. At first glance,
this might seem counterintuitive; however, note that the sparsity of a signal of a given rank grows
with dimension and so do the regularizing effects of positivity constraints.

4. Experiment

To verify our scheme, we construct an experimental setup that allows us to generate and detect
vortex beams at the single photon level using a spatial light modulator (SLM) and an intensified
CCD (ICCD camera, respectively. A simplified sketch is shown in Fig. 2. A quasi-continuous
UV laser, at a wavelength of 355 nm, is used to pump a type-I β-barium borate (BBO) crystal in
order to generate single photons via spontaneous parametric downconversion. The spatial modes
of the generated photons are filtered to the fundamental Gaussian mode by coupling them to a
single mode fibre (SMF). A coincidence rate of 30 kHz and singles rate of 200 kHz is measured
after the SMF. The photons are then coupled out of the SMF and are made incident on an SLM,
(X10468-07, Hamamatsu) consisting of an electronically controlled nematic liquid crystal device
with 792 × 600 pixels. The phase and the intensity of the generated photons are controlled via a
holographic intensity masking technique [35], with a diffraction efficiency greater than 70 %. To
achieve a higher mode quality, a 10× microscope objective with a numerical aperture of 0.25
is employed to obtain a relatively large collimated beam at the SLM. The mode waist of the
amplitude-modulated hologram at the SLM is determined to have an effectively flat phase and
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Fig. 3. Experimental reconstruction from compressed sensing. (a) Density matrix of the
true state and (b) Reconstructed density matrix after two intensity scans with a signal space
spanned by ` ∈ {−4, . . . , 4}. The upper row shows four experimental ICCD scans at the
planes z/zR =0, 1/3, 1/2, and 1, respectively. The lower row shows the predictions from the
reconstructed state of the same ICCD scans.

intensity for the incoming beam over the region of interest of the hologram. By doing so, we may
generate any arbitrary spatial mode with a high-level of accuracy. In the case of pure states, a
single hologram is used for shaping the transverse modes of all photons in the ensemble. For
mixed states, the appropriate holograms are randomly varied to generate incoherent statistical
mixtures of the desired modes. A single intensity scan is then recorded over the whole ensemble
of generated photons.
To observe the intensity variation of LG modes upon propagation, due to the differences in

Gouy phases, the beam must propagate for distances that are on the order of the Rayleigh range
zR. This is achieved by simply focusing the beam. In the scheme described above, the ICCD
camera is moved along the path of the beam in the z-direction. However, this is equivalent
to varying the focal length of the lens and considering a fixed position of the ICCD camera.
This is accomplished by imprinting a phase profile of the form exp

(
−i k r2/2 f

)
, where f is the

focal length of the flat lens. By doing so, our experimental reconstruction does not require any
mechanical displacement of the components in the setup. Intensity scans are recorded for different
focal lengths corresponding to positions of z/zR = 0, 1/3, 1/2 and 1. Finally, both coincidence

(b)(a)
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Fig. 4. Experimental reconstruction from compressed sensing. (a) Density matrix of the true
state and (b) Reconstructed density matrix after one intensity scan. The upper row shows
four experimental ICCD scans at the planes z/zR =0, 1/3, 1/2, and 1, respectively. The lower
row shows the predictions from the reconstructed state of the same ICCD scans.
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Fig. 5. Entropy S as a function of the number of intensity scans Z , for a signal space
spanned by ` ∈ {−4, . . . , 4} and for true states of the form in (10). The circles are obtained
by averaging over 20 random states and the error bars indicate the corresponding variance.
Blue refers to protocol with positivity, while red is without positivity.

and singles counts measurements can be recorded with the ICCD camera. However, since we do
not make use of the spatial correlation resulting from spontaneous parametric downconversion,
the ICCD camera is used without triggering, where shorter integration time may be considered.
The true states are chosen to be following rank–2 states,

% = p |0〉 〈0| + (1 − p) |Ψ〉 〈Ψ| , (10)

with |Ψ〉 = cos θ |−3〉 + sin θ |3〉. In the experiment, we randomly generate 20 states for values
of p and θ chosen. The OAM mixed states are generated by randomly varying the holograms
displayed on the SLM. The holograms corresponding to the states |0〉 and |Ψ〉 are displayed
for a fraction of the total integration time corresponding to p and (1 − p), respectively. In
Fig. 3, we present the results for a typical state % with two ICCD scans. The corresponding
reconstructed density matrix is plotted in the left column. Even though we are dealing with
informationally incomplete measurements, the protocol with positivity using two intensity scans
fits the theoretical data quite well. Without the positivity constraint, the reconstructed states are
very different from the true ones. We have also experimentally checked that when the signal space
is constrained to only positive topological charges `, one intensity scan is enough to accurately
predict the intensity scans in other planes, as anticipated by our theory.
We have also considered another set of rank–2 states, similar to Eq. (10), but now with
|Ψ〉 = cos θ |2〉 + sin θ |4〉. The results are presented in Fig. 4. The reconstructed density matrix
is plotted in the left column. We have also experimentally checked that when the signal space
is constrained to only positive topological charges `, one intensity scan is enough to accurately
predict the intensity scans in other planes, as anticipated by our theory.
To assess the degree of IC for the intensity scans, we first consider a matrix of reconstructed

states { %̂j} with its jth column defined as a flattened %j . A unique solution for the extremal
problem Eq.(1) then implies that the entropy of normalized singular values for this matrix is
zero. To compute the entropy, we reconstructed 20 true states for every ICCD scan, and average
over all of them. As can be seen in Fig. 5, the protocol with positivity constraints is enough to
characterize the input state with solely two scans. We corroborate once again that if we restrict
our space to be spanned only with nonnegative azimuthal indices, the measurement is IC for both
strategies (with and without positivity) with only one intensity scan.
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5. Concluding remarks

In summary, we have developed a compressed sensing scheme able to uniquely reconstruct any
rank-deficient qudit state encoded in the OAM degree of freedom. The positivity constraint has
played a substantial role as a powerful regularization to perform a tomographic reconstruction in
the regime of informationally incomplete data for intermediately sized quantum systems. This
establishes a novel and efficient tomographic paradigm for OAM systems that could trigger
interesting experimental research on complex quantum states, which otherwise might have been
infeasible with currently known detection schemes in such experiments.
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