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We model spontaneous parametric down-conversion (SPDC) as classical difference frequency generation
(DFG) of the pump field and a hypothetical stochastic “vacuum” seed field. We analytically show that the
second-order spatiotemporal correlations of the field generated from the DFG process replicate those of the
signal field from SPDC. Specifically, for low gain, the model is consistent with the quantum calculation of
the signal photon’s reduced density matrix; and for high gain, the model’s predictions are in good agreement
with our experimental measurements of the far-field intensity profile, orbital angular momentum spectrum,
and wavelength spectrum of the SPDC field for increasing pump strengths. We further theoretically show that
the model successfully captures second-order SU(1,1) interference and induced coherence effects in both gain
regimes. Intriguingly, the model also correctly predicts the linear scaling of the interference visibility with
object transmittance in the low-gain regime—a feature that is often regarded as a quintessential signature
of the nonclassicality of induced coherence. Our model may not only lead to fundamental insights into the
classical-quantum divide in the context of SPDC and induced coherence, but can also be a useful theoretical tool
for numerous experiments and applications based on SPDC.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is a
nonlinear optical phenomenon in which an incident field
known as the pump interacts with a noncentrosymmetric
medium to produce a pair of fields known as signal and
idler [1–3]. In the quantum paradigm, this interaction can be
modeled as a series of infinitely-many contributing processes,
where the nth order contribution physically corresponds to
n pump photons being annihilated to produce n signal pho-
tons and n idler photons [4]. The strength of the interaction,
referred to as the gain, is directly proportional to the pump
field strength [5]. For typical continuous-wave and low-power
pulsed pump lasers, the interaction is weak and can be approx-
imated by the dominant first-order contribution alone, which
yields an entangled two-photon signal-idler state [6–8]. In this
low-gain regime, which is characterized by a linear growth
of the generated fields with respect to the pump amplitude,
SPDC sources are ubiquitously employed in fundamental
quantum optics experiments [9–12] and optical quantum tech-
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nologies [13–15]. On the other hand, for high-power pulsed
pump lasers, the interaction can be strong and may comprise
of significant higher-order contributions, thereby producing a
bright multiphoton entangled state of the signal and idler fields
[16,17]. In this high-gain regime, which is characterized by an
exponential growth of the generated fields with respect to the
pump amplitude, SPDC has significant potential for applica-
tions such as sub-shot noise imaging [18,19] and generation
of nonclassical states of light [20,21].

While the precise form of two-photon state produced in
the perturbative low-gain regime has long been analytically
derived for a general pump profile [6–8], the theoretical
characterization of the nonperturbative high-gain regime has
proved to be much more difficult. In order to correctly evalu-
ate higher-order contributions, one must account for the fact
that the interaction Hamiltonian may not commute with itself
at different times, and consequently, the Schrödinger time-
evolution operator must strictly be expanded in terms of the
time-ordered Dyson series instead of the usual Taylor series
[22]. However, it was shown that any finite-order truncation
of the Dyson series destroys the Gaussian character of the
output state [23], whereas the exact solution can be proved
to be a Gaussian state solely from the quadratic form of the
interaction Hamiltonian [24]. Such issues can be avoided by
turning to the Heisenberg picture, where one instead obtains a
set of coupled differential equations for the evolution of the
signal and idler mode operators [5,25–27]. However, these
equations have so far been exactly solved only for the special
case of a monochromatic plane-wave pump [5], and approx-
imately solved for the cases of a broadband pump with a
single spatial mode [25], and a pump with narrow spectral and
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angular bandwidths [16]. Some studies have explored analyt-
ical ansatz solutions that assume gain-independent Schmidt
modes for the output state [28,29]. However, these solutions
have limited applicability as they are unable to account for
experimental observations such as broadening of the angular
spectrum and wavelength spectrum of the SPDC field with
increasing gain [30,31]. More recently, a quantum calcula-
tion using the Wigner functional approach that includes the
spatiotemporal and photon number degrees of freedom has
been reported, but a comparison to experiment is still pending
[32,33]. Thus, the theoretical characterization of high-gain
SPDC still remains an active research area.

In view of the aforementioned challenges encountered in
performing a general quantum calculation, one can instead
ask: Is there a classical analytical model that can consistently
predict at least a restricted class of correlations in high-gain
SPDC? For instance, in the low-gain regime, it is known
that second-order (in fields) autocorrelations of the individ-
ual fields can be modeled classically [34–38]. A simple and
elegant approach in this context was developed in Ref. [34],
where SPDC is modeled as the paraxial propagation of a
classical partially-coherent source created in the nonlinear
medium by the coupling of the pump field to a classical noise
field that simulates the vacuum fluctuations. The second-order
correlations derived using this approach were demonstrated
to be consistent with the quantum calculation of the reduced
one-photon density matrix in the low-gain regime. However,
this approach does not appear to admit a straightforward gen-
eralization to the high-gain regime as the generated field is
a priori assumed to scale linearly with the pump amplitude.
Another approach, which has also been neatly summarized
in Ref. [34], is to model SPDC as a three-wave mixing pro-
cess between the pump and the vacuum fluctuations [35–37].
In particular, the spatial and spectral profiles of the SPDC
field can be derived by solving differential equations involv-
ing a stochastic term that represents the vacuum fluctuations
[36,37], although the origin of coherence is less clear and
has been attributed to various specific experimental conditions
[39,40]. However, to our knowledge, this latter approach has
not been taken beyond the plane-wave pump case in the high-
gain regime to derive analytical solutions for realistic pump
fields with finite spectral and angular bandwidths. Moreover,
this latter approach has also not yet been employed for an-
alyzing two-crystal settings such as SU(1,1) interferometers
[41,42] and induced coherence-related experiments [11,43].

In this paper, we adopt the aforementioned latter approach
and model SPDC as classical difference frequency generation
(DFG) of the pump field and a classical stochastic seed field
that simulates the zero-point vacuum fluctuations. In contrast
with previous studies, we derive analytical expressions for
the second-order spatiotemporal correlations of the generated
signal field for a narrow-but-finite-bandwidth pump in low-
and high-gain regimes. The paper is organized as follows:
In Sec. II, we set up the model and derive the second-order
spatiotemporal correlation function of the generated field in
low- and high-gain regimes. In Sec. III, we perform experi-
mental measurements of the far-field intensity profile, orbital
angular momentum spectrum, and wavelength spectrum for
increasing pump strengths and demonstrate their agreement
with the model’s predictions. In Sec. IV, we extend the model

FIG. 1. Modeling SPDC as DFG of the pump with a hypothetical
classical “vacuum” seed field.

to analyze SU(1,1) interference and induced coherence effects
in both low- and high-gain regimes. In Sec. V, we conclude
with a summary and outlook.

II. THEORETICAL MODEL

As depicted in Fig. 1, we model SPDC as DFG of the pump
field Ap with a hypothetical classical seed field Ai that mimics
the effect of zero-point vacuum fluctuations. Our goal is to
compute the second-order spatiotemporal correlations of the
generated field As, which is assumed to be totally absent prior
to the interaction. We approximate the fields to be paraxially
propagating along the longitudinal z axis. A crystal of length
L and second-order nonlinear susceptibility χ (2) is placed
perpendicular to the z axis, and the crystal’s input face is
used to define z = 0. The Fourier amplitudes (not including
propagation phases) for the pump field, classical “vacuum”,
and the generated fields are denoted by stochastic functions
Aj (q j, ω j, z), where q j and ω j are the transverse wavevector
and frequency coordinates, for j = p, i, and s, respectively. In
terms of the position vector r ≡ (ρ, z), where ρ is transverse
position, and wavevectors k j ≡ (q j, k jz ), we define the elec-
tric field mode functions

E j (r, ω j ) =
∫

dq jA j (q j, ω j, z) ei(q j ·ρ+k jzz). (1)

We now assume that the energy depletion of the pump due
to the nonlinear interaction is negligible, and consequently,
the pump amplitude Ap(qp, ωp) is independent of z. We em-
phasize that the pump field can be pulsed or continuous-wave
with any arbitrary spectral and spatial profile. The evolution
of the other two fields is governed by the wave equation of
nonlinear optics (see Eq. 2.1.23 of Ref. [3])

∇2E j (r, ω j ) + n2
jω

2
j

c2
E j (r, ω j ) = − ω2

j

ε0c2
PNL(r, ω j ), (2)

where j = s, i, and nj is the refractive index inside the crystal.
Assuming energy conservation, i.e., ωp = ωs + ωi, the non-
linear polarization PNL(r, ω j ) can be written as (see Eq. 1.5.30
of Ref. [3])

PNL(r, ω j ) = 4ε0deff

∫
dωp E p(r, ωp)E∗

l (r, ωl ), (3)

where j = s(i) and l = i(s). In our scalar treatment, the quan-
tity deff = χ (2)/2 is the nonlinear coupling coefficient of the
crystal medium, and its dependence on frequency has been
ignored. Substituting Eqs. (1) and (3) into (2) and making the
slowly-varying envelope approximation ∂2

∂z2 Aj (q j, ω j, z) �
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k jz
∂
∂z A j (q j, ω j, z) for j = s, i, we obtain (see Appendix A for

the detailed calculation)

∂As(qs, ωs, z)

∂z
= 2ideffω

2
s

kszc2

∫∫
dωi dqi Ap(qp, ωp)

× A∗
i (qi, ωi, z)ei�kzz, (4a)

∂A∗
i (qi, ωi, z)

∂z
= −2ideffω

2
i

kizc2

∫∫
dωs dqs A∗

p(qp, ωp)

× As(qs, ωs, z)e−i�kzz, (4b)

where �kz = kpz − ksz − kiz is the longitudinal phase mis-
match, and its dependence on qs, qi, ωs, and ωi has been
suppressed for brevity. We have assumed that the transverse
dimensions of the crystal are much larger than those of the
pump beam, which leads to conservation of transverse mo-
mentum, i.e., qp = qs + qi. The above coupled differential
equations (4) describe the nonlinear interaction for arbitrary
strengths of the pump field.

A. Low-gain regime

When the pump power is low, the nonlinear interaction
is weak. In the context of DFG with monochromatic plane
waves, it is known that under weak interaction, the longitu-
dinal growth of the seed field is negligible (see Sec. 2.8 of
Ref. [3]). Hence, we approximate A∗

i (qi, ωi, z) ≈ A∗
i (qi, ωi, 0)

and simply integrate Eq. (4a) from z = 0 to z = L to obtain

As(qs, ωs, L) = 2ideffω
2
s

kszc2

∫∫
dωi dqi Ap(qp, ωp)

× A∗
i (qi, ωi, 0)

∫ L

0
dz ei�kzz

= deffLω2
s

kszc2

∫∫
dωi dqi Ap(qp, ωp)A∗

i (qi, ωi, 0)

× sinc(�kzL/2) exp(i�kzL/2), (5)

where sinc(x) ≡ (sin x)/x. Using the above equation, we eval-
uate the second-order correlation function [44]

〈As(qs, ωs, L)A∗
s (q′

s, ω
′
s, L)〉

= d2
effL

2ω2
s ω

′
s
2

kszk′
szc

4

∫∫∫∫
dωi dqi

× dω′
i dq′

i 〈Ap(qs + qi, ωs + ωi )A
∗
p(q′

s + q′
i, ω

′
s + ω′

i )〉
× 〈Ai(q′

i, ω
′
i, 0)A∗

i (qi, ωi, 0)〉 sinc(�kzL/2)

× sinc(�k′
zL/2) ei(�kz−�k′

z )L/2, (6)

where 〈· · · 〉 denotes an ensemble average and �k′
z is the

phase mismatch evaluated for the primed variables. We have
assumed that the pump and classical “vacuum” fields have no
mutual correlation, and as a result, their individual correlation
functions factor out separately.

In order to evaluate the above Eq. (6), we must
now substitute for 〈Ai(q′

i, ω
′
i, 0)A∗

i (qi, ωi, 0)〉. While it
may seem reasonable to assume that different modes of
the classical “vacuum” are completely uncorrelated, i.e.,
〈Ai(q′

i, ω
′
i, 0)A∗

i (qi, ωi, 0)〉 = C δ(qi − q′
i )δ(ωi − ω′

i ), it is pos-
sible to explicitly derive this relation along with the value of

the scaling factor C if we make a short detour to quantum the-
ory. We note from the quantized theory of the electromagnetic
field that (see Sec. 2.3.3 of Ref. [45])

Ê i(r, ωi ) = i
∫

dqi

√
h̄ωi

4πε0
â(qi, ωi ) ei(qi·ρ+kizz) + c.c, (7)

where Ê i(r, ωi ) is the quantized operator corresponding
to the classical amplitude E i(r, ωi ) defined in Eq. (1) and
â(qi, ωi ) is the annihilation operator for the mode specified
by its arguments. Upon comparing Eqs. (1) and (7), it is
clear that for Ai(qi, ωi, 0) to effectively mimic the vacuum
fluctuations, we must have 2〈Ai(q′

i, ω
′
i, 0)A∗

i (qi, ωi, 0)〉 =
h̄
√

ωiω
′
i

4πε0
〈vac|âi(q′

i, ω
′
i )â

†
i (qi, ωi )|vac〉, where |vac〉 is the

quantum state of the vacuum [46]. Using the relation
〈vac|âi(q′

i, ω
′
i )â

†
i (qi, ωi )|vac〉 = δ(q′

i − qi )δ(ωi − ω′
i ) from

quantum theory [48], we obtain

〈Ai(q′
i, ω

′
i, 0)A∗

i (qi, ωi, 0)〉 = h̄ωi

8πε0
δ(qi − q′

i )δ(ωi − ω′
i ).

(8)

Thus, we find that the different modes of the classical “vac-
uum” are indeed completely uncorrelated, and the scaling
factor h̄ωi/8πε0 ensures consistency with the zero-point
energy of the quantum vacuum fluctuations. The above deriva-
tion of Eq. (8) is the only calculation in this paper that
explicitly appeals to quantum theory [49].

We now substitute Eq. (8) into Eq. (6), replace the slowly-
varying term ωi by its central value ωi0, and take it outside the
integral to obtain

〈As(qs, ωs, L)A∗
s (q′

s, ω
′
s, L)〉

= h̄ωi0d2
effL

2ω2
s ω

′
s
2

8πε0kszk′
szc

4

×
∫∫

dωidqi〈Ap(qs+qi, ωs+ωi )A
∗
p(q′

s+qi, ω
′
s+ωi )〉

× sinc(�kzL/2)sinc(�k′
zL/2) ei(�kz−�k′

z )L/2. (9)

The above expression is consistent with the reduced den-
sity matrix of the signal photon obtained from the full
quantum-mechanical treatment of low-gain SPDC [6–8]. The
integration over the classical “vacuum” modes on the right-
hand side of Eq. (9) is formally equivalent to performing a
partial trace of the two-photon density matrix over the idler
photon. Thus, the generated field from DFG in the low-gain
regime replicates the signal field from SPDC with respect to
second-order spatiotemporal correlations, and in this context
the classical “vacuum” field in DFG plays a role equivalent
to that of the idler field from SPDC. However, we emphasize
that the latter equivalence is valid only for the specific purpose
of deriving the second-order correlations of the signal field
because the correlations of the classical “vacuum” do not
reflect those of the idler field in reality.

B. High-gain regime

When the pump power is high and consequently, the non-
linear interaction is strong, we can no longer ignore the
longitudinal growth of the seeding classical “vacuum”. As a
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result, the derivation of the signal field correlations is slightly
more involved and proceeds a bit differently. In particular, we
will now use the position-time representation Vp(ρ, t ) of the
pump amplitude, which is related to the Fourier amplitude
Ap(qp, ωp) as

Vp(ρ, t ) =
∫∫

dqpdωp Ap(qp, ωp)ei(qp·ρ−ωpt ). (10)

We invert the Fourier relation in Eq. (10), substitute it into
Eq. (4), and differentiate with respect to z to obtain

∂2As(qs, ωs, z)

∂z2
= 2ideffω

2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt

× Vp(ρ, t )e−i(qp·ρ−ωpt ) ei�kzz

[
∂A∗

i (qi, ωi, z)

∂z

+ i�kzA
∗
i (qi, ωi, z)

]
. (11)

In most experiments, the angular and frequency bandwidths
δqp and δωp of the pump are much smaller than the cor-
responding bandwidths δqs and δωs of the generated SPDC
field, respectively. Under this condition of a “narrow-band
pump”, the variation of �kz with respect to qp and ωp is
much slower than that of Ap(qp, ωp), which is usually sharply-
peaked around the central wavevector qp0 = 0 and the central
pump frequency ωp0. As a result, one can define �k̄z as the
central value of �kz evaluated for the conditions qs + qi = 0
and ωs + ωi = ωp0, approximate �kz ≈ �k̄z (this approxima-
tion is exactly true only for the monochromatic plane-wave
pump case) in the second term on the right-hand side, and take
it outside the integral. We note that any quantity appearing
with an overbar notation in the rest of this paper must be
understood as the central value of that quantity evaluated for
the aforementioned conditions. Using Eqs. (4) and (10) in
Eq. (11) (see Appendix B 1 for details), we obtain

∂2As(qs, ωs, z)

∂z2
− i�k̄z

∂As(qs, ωs, z)

∂z

− Ḡ2(ρ, t ) As(qs, ωs, z) = 0, (12)

where we have defined

G2(ρ, t ) = 4d2
effω

2
s ω

2
i

kszkizc4
|Vp(ρ, t )|2. (13)

Upon solving Eq. (12) subject to the initial conditions
As(qs, ωs, z = 0) = 0 and ∂As(qs, ωs, z)/∂z|z=0 evaluated us-
ing Eqs. (4a) and (10), we obtain (see Appendix B 2 for
details)

As(qs, ωs, L)

= 2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t )

× e−i(qp·ρ−ωpt ) A∗
i (qi, ωi, 0)

[
sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

]

× ei(�kz−�k̄z/2)L, (14)

where

	(�k̄z, ρ, t ) ≡
√

Ḡ2(ρ, t ) −
(

�k̄z

2

)2

. (15)

Using Eqs. (8) and (14), and taking ωi ≈ ωi0 outside the inte-
gral, we find (see Appendix B 3 for the detailed calculation)

〈As(qs, ωs, L)A∗
s (q′

s, ω
′
s, L)〉

= h̄ωi0d2
effω

2
s ω

′
s
2

(2π )4ε0kszk′
szc

4

×
∫∫

dρ dt 〈|Vp(ρ, t )|2〉 e−i[(qs−q′
s )ρ−(ωs−ω′

s )t]

×
[

sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ, t )L

	(�k̄′
z, ρ, t )

]

× ei(�k̄z−�k̄′
z )L/2. (16)

The above expression quantifies the second-order spatiotem-
poral correlations of the generated field for a narrow-band
pump in the high-gain regime. It may be verified that Eq. (16)
is consistent with previous quantum derivations of the high-
gain SPDC field correlations for a monochromatic plane-wave
pump [5] (see also Ref. [50], where analogous expressions
have been derived in the quantum treatment of Josephson
traveling wave parametric amplifiers) and a narrow-band
pump [16] (see Eq. B.1 in Appendix B of Ref. [51],
where the expression derived in Ref. [16] has been used for
quantifying spatial correlations in degenerate SPDC with a
quasimonochromatic pump with narrow angular bandwidth).
We however note that owing to the “narrow-band” approxi-
mation involved in the above derivation, in the low-gain limit
G(ρ, t ) → 0 wherein 	(�k̄z, ρ, t ) → i�k̄z/2, Eq. (16) is in
general only approximately equivalent to Eq. (9). Neverthe-
less, it can be verified that the equivalence is exact for the
case of a monochromatic plane-wave pump, for which the
“narrow-band” approximation is exactly true. In the following
section, we experimentally test the predictions of Eq. (16) by
measuring the far-field intensity profile, OAM spectrum, and
frequency spectrum in high-gain SPDC for increasing gain
with a pulsed Gaussian pump.

III. SINGLE-CRYSTAL SETUP:
EXPERIMENTS AND THEORY

In our experimental setup depicted in Fig. 2, a 355-nm
Nd:YAG laser (EKSPLA PL2231) emits 30 ps long pulses
of vertically-polarized light at a repetition rate of 50 Hz.
These pulses are spatially-filtered and used to pump a 3-mm-
long type-I β-barium borate (BBO) crystal (cut to produce
horizontally-polarized collinear degenerate emission for per-
pendicular incidence of a vertically-polarized pump) placed
at the pump’s waist plane. A combination of a half-wave plate
(HWP) and polarizing beamsplitter (PBS) is used to control
the pump amplitude reaching the crystal. This pump ampli-
tude is inferred up to an overall scaling factor from energy
measurements using the energy meter (Coherent EnergyMax
USB-J-10MB-HE). The beam-waist size wp, defined as the
1/e2 half width of the intensity profile at the waist plane, was
measured using a Gentec Beamage-3.0 beam profiler to be
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FIG. 2. Schematic of the experimental setup used for measur-
ing the far-field intensity profile, OAM spectrum, and wavelength
spectrum in high-gain SPDC for increasing pump strengths. SF:
spatial filter, HWP + PBS: half-wave plate + polarizing beam-
splitter combination for pump amplitude control, BBO: β-barium
borate nonlinear crystal, DM: dichroic mirror, BD: beam dump,
BS: beamsplitter, FM: flip mirror, T: translation stage to control the
interferometric phase δ, IF: interference filter centered at 710 nm.

wp = 185 μm. The residual pump after the crystal is removed
by means of two dichroic mirrors (DMs), and the generated
SPDC field is guided towards different parts of the setup for
measurements as described in the following subsections.

A. Far-field intensity

We place a lens with its focal plane coinciding with the
crystal output face, and directly image the SPDC far-field on
an Andor Ixon-897 EMCCD camera (pixel size 16 μm ×
16 μm) that is placed at the plane indicated by the dashed
line after the flip mirror (FM) location depicted in Fig. 2.
The crystal orientation was approximately set to satisfy the
collinear emission, and a 10-nm interference filter (IF) cen-
tered at the degenerate wavelength λs = 2λp0 = 710 nm was
placed at the camera aperture. We rotate the HWP across
different angles and acquire five sets of ten images each of
the SPDC far-field for each corresponding pump amplitude,
which is simultaneously measured using the energy meter. We
then take diametric slices along the horizontal and vertical
axes of each SPDC profile and compute the full widths at
half maximum (FWHMs). We observe an asymmetry of about
4% between the widths in the two directions due to spatial
walk-off. However, we ignore walk-off effects in our study
and consider the mean of the two widths as the width of the
far-field profile. The FWHM width is converted from number
of pixels to angle in milliradians by using the camera pixel
size and the focal length of the collimating lens.

For obtaining the theoretical prediction, we fix the vari-
ables in the temporal degree of freedom by assuming
degenerate SPDC λs = 710 nm with a quasimonochromatic
pump of wavelength λp0 = 355 nm. We verify that the pump
angular bandwidth δqp = 2/w2

p ≈ 58 mm−2 is indeed much
smaller than the SPDC angular bandwidth δqs = |ks|/L ≈
4910 mm−2 [16]. We then use Eq. (16) to compute the far-field

intensity as

〈|As(qs)|2〉 = Karb

k2
sz

∫
dρ 〈|Vp(ρ)|2〉

×
∣∣∣∣ sinh 	(�k̄z, ρ)L

	(�k̄z, ρ)

∣∣∣∣
2

, (17)

where Karb is an overall scaling constant. Throughout this
paper, the quantity Karb must be interpreted as an arbitrary
scaling factor whose value is irrelevant for our purposes. The
frequency-time coordinates have been suppressed for brevity.

For our experiments, the pump field profile and phase-
mismatch are given by

Vp(ρ) = gexp{−|ρ|2/w2
p}, (18a)

�k̄z = |kp| − 2
√

|ks|2 − |qs|2, (18b)

where g is a pump amplitude scaling factor, |ks| = 2πnso/λs,
|kp| = 2πηp(θp)/λp0, θp is the angle between the pump prop-
agation direction and the optic axis inside the crystal, and

ηp(θp) = npenpo/

√
n2

po sin2 θp + n2
pe cos2 θp is the effective re-

fractive index of the extraordinary-polarized pump inside the
crystal [52]. The values np(e)o and nso of the (extra)ordinary
and ordinary refractive indices of BBO for the pump and
signal wavelengths, respectively, can be obtained using the
Sellmeier relations [53]

n2
e (λ) = 2.7405 + 0.0184

λ2 − 0.0179
− 0.0155λ2, (19a)

n2
o(λ) = 2.3730 + 0.0128

λ2 − 0.0156
− 0.0044λ2, (19b)

where λ is the corresponding wavelength in microns. Using
these parameters with Eq. (17), we perform a least-squares
fit between theory and experiment of the logarithmic total
far-field intensity with g as the fit parameter. The value of θp

for the simulations is allowed to have a small offset from the
collinear emission condition θ (coll)

p = 32.914◦ because in ex-
periments, θp is set by hand to approximately satisfy collinear
emission. We ignore walk-off effects and exploit the rotational
symmetry of the pump and the SPDC field to significantly
speed up our simulations.

We depict our experimental and theoretical results in Fig. 3.
In our simulations, we chose θp = 32.9105◦, which is less
than 0.004◦ away from θ (coll)

p = 32.914◦. The experimental
and theoretical far-field intensity profiles for g = 3.5 (in ar-
bitrary units) are shown in Figs. 3(a) and 3(b), respectively.
Apart from some visible aberrations in the experimental im-
age Fig. 3(a) that appear due to burnt spots and dust on a
dichroic mirror, the profiles match closely. In Fig. 3(c), we
show the trends of the full widths at half maximum (FWHMs)
of diametric slices and total intensities of the far-field profiles
with increasing pump amplitudes. The observed increasing
trend of the FWHMs indicating the broadening of the angular
spectrum with gain has also been reported previously [31].
Here, we find good agreement of our classical model’s pre-
dictions with experimental observations.
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FIG. 3. Broadening of the far-field intensity profile of the SPDC
field with increasing gain. (a) and (b) depict the experimental and
theoretical images for g = 3.5. The experimental and theoretical total
intensities and full widths at half maximum (FWHMs) of diametric
slices of such profiles for increasing pump amplitudes are depicted
in (c).

B. OAM spectrum

In SPDC with a zero-OAM Gaussian pump field, OAM
conservation constrains the form of the generated state to
a high-dimensional superposition involving signal and idler
modes with opposite anticorrelated OAM values. In the low-
gain regime, these modes are populated by one photon each
[54], whereas in the high-gain regime, the same modes can
be populated by higher but correlated numbers of photons
[55]. In both cases, the second-order spatial correlations of
the signal field are equivalent to those of a field that is an in-
coherent mixture of different OAM states, and the distribution
of the weights of the OAM states is referred to as the OAM
spectrum. We now study the behavior of the OAM spectrum
in high-gain SPDC for increasing pump strengths.

We define the polar coordinates (qs, φs) of qs to be re-
lated to the Cartesian coordinates as (qs sin φs, qs cos φs) =
(qsx, qsy ). The generated field of Eq. (14) can be written as
[56]

As(qs, φs) =
+∞∑

l=−∞

∞∑
p=0

αl pLGl
p(qs) eilφs , (20)

where l and p are the azimuthal and radial indices of the
Laguerre-Gauss mode functions LGl

p(qs) eilφs , and αl p are
stochastic coefficients that satisfy

∑
p〈αl pα

∗
l ′ p〉 = Slδll ′ , where

δll ′ is the Kronecker delta symbol. The quantities Sl , which
include contributions from all the constituent radial modes,
are collectively referred to as the OAM spectrum. The an-
gular coherence function W (φs1, φs2) = W (φs1 − φs2) defined

as [56,57]

W (φs1 − φs2) =
∫

dqs qs 〈As(qs, φs1)A∗
s (qs, φs2)〉, (21)

has been shown to be related to the OAM spectrum Sl by the
Fourier transform relation [56,57]

Sl =
∫ π

−π

d�φ W (�φ) eil�φ. (22)

Thus, the angular coherence function W (φs,−φs) = W (2φs)
can be computed using Eqs. (16) and (21), following which
Eq. (22) can be used to obtain the OAM spectrum.

In our experiments, we employ the interferometric tech-
nique reported in Ref. [56] to measure the OAM spectrum
of the high-gain SPDC field. As shown in Fig. 2, the SPDC
field is incident onto a Mach-Zehnder interferometer with an
odd and even number of mirrors in the two arms, and its far-
field interferograms are imaged using the EMCCD camera.
The constructive and destructive interferograms are acquired
by changing the interferometric phase δ using the translation
stage, and their difference image is used to compute the OAM
spectrum [56]. However, this direct procedure results in large
errors in the value of S0 due to shot-to-shot fluctuations in the
pump energy. We partially address this problem by averaging
the interferograms over two hundred pulses, but interferomet-
ric phase drifts prevent us from increasing the acquisition time
further. Moreover, the larger acquisition times also introduce
errors due to systematic energy drifts of the laser. Therefore,
we normalize the constructive and destructive interferograms
such that the intensities in a 20 × 20 pixels region away from
the central interference fringe for both images are the same.
Such a normalization effectively simulates the situation where
the two interferograms were obtained for identical pump en-
ergies and almost entirely eliminates the fluctuation in S0. In
addition, the sum image of the two interferograms after this
normalization effectively approximates the intensity profile of
the SPDC field, which is then used for fitting the experimental
results to the model’s predictions. In this way, we obtain
the OAM spectra and the total intensities for different pump
amplitudes.

We compute the theoretical predictions using the same
parameters that were used in the previous subsection. We per-
form a fit between theory and experiment of the logarithmic
total intensities for different pump amplitudes with g as the
fit parameter. Using Eqs. (16) and (21), we then compute
W (φs,−φs), and subsequently use Eq. (22) to compute the
OAM spectrum for each pump amplitude. For our simulations,
we choose θp = 32.894◦, which is only 0.02◦ away from
θ (coll)

p = 32.914◦. A slight discrepancy between the values of
θp in this subsection and the previous subsection is expected
because the crystal was realigned between the two rounds of
experiments. The rotational and reflection symmetries of the
pump and SPDC fields can be used to significantly speed up
the computations.

We depict our experimental and theoretical results in Fig. 4.
The constructive and destructive experimentally-measured
interferograms for g = 3.0 (in arb units) are depicted in
Figs. 4(a) and 4(b). The measured OAM spectrum with the
theoretically-predicted spectrum are shown in Fig. 4(c). The
width of the OAM spectrum can be quantified using the
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FIG. 4. Narrowing of the OAM spectrum of the SPDC signal
field with increasing gain. (a) and (b) are the constructive and
destructive interferograms, and (c) depicts the measured OAM spec-
trum along with the theoretical prediction for g = 3.0. (d) depicts the
total intensity and Schmidt number Ka ≡ 1/

∑
l S2

l as a function of
pump amplitude g.

angular Schmidt number Ka ≡ 1/
∑

l S2
l , where the spectrum

is normalized such that
∑

l Sl = 1. In Fig. 4(d), we depict
the trends of the total intensity and the Schmidt number for
increasing pump amplitudes. The decreasing Schmidt number
implies that the OAM spectrum narrows with increasing gain.
Again, we find that our experimental measurements are in
good agreement with the predictions of our classical model.

C. Wavelength spectrum

We raise the flip mirror depicted in Fig. 2 and guide
the SPDC field into a spectrometer to measure its wave-
length spectrum. The spectrometer is an imaging spectrograph
(Princeton Instruments Acton Series SP2558 500 mm triple-
grating) with a CCD camera (PIXIS:100BR eXcelon, pixel
size 20 μm × 20 μm). An aperture of 1-mm radius is used
to select only the central portion of the collinear emission
far-field corresponding to qs ≈ 0, and a lens with focal length
500 mm is used to focus the light from the aperture onto
the entrance slit of the spectrometer. We record each CCD
image with an acquisition time of 4000 ms, and integrate the

photoelectron counts over the vertical axis of the image to
obtain the spectrum. We record ten spectra for each pump
amplitude over the range from 610 nm to 810 nm, and to cover
this range, we repeat the acquisition for different angular
positions of the grating (1200 grooves per mm, 750 nm blaze).
We apply a median filter to the recorded spectra to eliminate
outlier peaks that appear at random locations.

For evaluating the theoretically predicted spectrum, we set
qs = 0 in collinear SPDC, and obtain the frequency spectrum
from Eq. (16) as

〈|As(ωs)|2〉 = Karb ω2
s

∫∫
dρ dt 〈|Vp(ρ, t )|2〉

×
∣∣∣∣ sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

∣∣∣∣
2

. (23)

The spatial coordinates of the signal field have been sup-
pressed for brevity. The wavelength spectrum S(λs) can
be computed using the relation S(λs) = 〈|As(ωs)|2〉|dωs/dλs|
that upon using ωs = 2πc/λs yields

S(λs) = Karb〈|As(2πc/λs)|2〉/λ2
s . (24)

We now compute S(λs) using the relations,

Vp(ρ, t ) = g exp

{
− t2

(2�t )2

}
exp

{
−|ρ|2

w2
p

}
, (25a)

FIG. 5. Broadening of the wavelength spectrum of the SPDC
signal field with increasing gain. (a) depicts the wavelength spectrum
for g = 2.8. (b) depicts the total intensity and FWHM widths of the
spectra for different pump amplitudes.
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FIG. 6. Conceptual schematic depiction of SU(1,1) interference
as interpreted in our classical model.

�k̄z = 2πηp(θp)

λp0
− 2πno(λs)

λs
− 2πno(λ̄i )

λ̄i
, (25b)

where g is a pump amplitude scaling factor, λ̄i = 1/(1/λp0 −
1/λs), and �t = 30/2.355 = 12.738 ps, where we have con-
verted the FWHM pulse width of the power to the standard
deviation width [58]. Using these parameters and the dis-
persion relations (19), we perform a least-squares fit of the
total intensities of the recorded spectra to the total intensities
predicted by Eq. (23) with g as the fit parameter. We then
use the fit value of g to compute the theoretically-predicted
spectra for different pump amplitudes. The spatial rotational
symmetry of the pump can be exploited to significantly reduce
computation time.

In Fig. 5, we depict our experimental and theoretical
results. In Fig. 5(a), we depict the experimental and theoret-
ical wavelength spectrum for g = 2.8 (in arb units), and in
Fig. 5(b), we depict the total intensities and the FWHM widths
of the spectra for different pump strengths. The increasing
FWHM width implies that the wavelength spectrum gets
broader with increasing pump strength in high-gain SPDC
[30]. Our experimental results are in good agreement with the
theoretical predictions of our classical model.

IV. TWO-CRYSTAL SETUPS: THEORY

A. SU(1,1) interference

SU(1,1) interferometers are nonlinear interferometers that
can be created by essentially replacing the beamsplitters in
linear SU(2) interferometers, such as Mach-Zehnder interfer-
ometers, by nonlinear crystals [41,42,59]. It is known that
such interferometers can achieve a phase sensitivity approach-
ing the Heisenberg limit with the important advantage that
they have a better loss tolerance than linear SU(2) interferom-
eters employing squeezed states of light. In addition to phase
metrology [60], SU(1,1) interferometers are also useful for
applications such as radiation shaping [61], microscopy [62],
optical coherence tomography [63], and sensing [64].

We consider the SU(1,1) setup shown in Fig. 6 that involves
two crystals 1 and 2, each of length L, separated by an air gap
of length D. We define the longitudinal coordinate z′ such that
z′ = 0 corresponds to the input face of crystal 2. We assume
that D is small enough such that the second crystal is in the
near field of the first crystal. Thus, the generated fields from
the two crystals can be assumed to overlap perfectly. As the
field Aj for j = p, s, i propagates across crystal 1 and the air

gap to reach crystal 2, it acquires a phase k jzL + k(air)
jz D, where

k(air)
jz represents the longitudinal wavevector component of the

corresponding field in air. As a result, the field generated in
crystal 2 follows the relation

∂As(qs, ωs, z′)
∂z′ = 2ideffω

2
s

kszc2

∫∫
dωi dqi Ap(qp, ωp)

× ei[�kzL+�k(air)
z D]A∗

i (qi, ωi, z′)ei�kzz′
, (26)

where �k(air)
z = k(air)

pz − k(air)
sz − k(air)

iz is the longitudinal phase-
mismatch in air. Using Eqs. (4a) and (26), the net field
As(qs, ωs) at the output of the interferometer can be written
as

As(qs, ωs) = 2ideffω
2
s

kszc2

∫∫
dωi dqi Ap(qp, ωp)

×
[∫ L

0
dz A∗

i (qi, ωi, z)ei�kzz + ei[�kzL+�k(air)
z D]

×
∫ L

0
dz′ A∗

i (qi, ωi, z′)ei�kzz′
]
. (27)

In what follows, we derive the second-order spatiotemporal
correlations of the output field in low- and high-gain regimes,
and illustrate the interference in the spatial domain through
numerical simulations.

1. Low-gain regime

In the low-gain regime, as the interaction is weak,
the longitudinal growth of the classical “vacuum” across
both the crystals is negligible. Therefore, we approximate
A∗

i (qi, ωi, z) ≈ A∗
i (qi, ωi, 0) in both terms of the right-hand

side of Eq. (27), and perform the integrations over z and z′
to obtain

As(qs, ωs) = deff Lω2
s

kszc2

∫∫
dωi dqi Ap(qp, ωp)A∗

i (qi, ωi, 0)

× sinc(�kzL/2) ei�kzL/2

× {
1 + ei[�kzL+�k(air)

z D]
}
. (28)

Using the above equation along with Eq. (8), we obtain

〈As(qs, ωs)A∗
s (q′

s, ω
′
s)〉

= h̄ωi0d2
eff L

2ω2
s ω

′
s
2

8πε0kszk′
szc

4

∫∫
dωi dqi

× 〈Ap(qs + qi, ωs + ωi )A
∗
p(q′

s + qi, ω
′
s + ωi )〉

× sinc(�kzL/2)sinc(�k′
zL/2) ei(�kz−�k′

z )L/2

× {1 + ei[�kzL+�k(air)
z D]}{1 + e−i[�k′

zL+�k′(air)
z D]}. (29)

The above expression quantifies the second-order spatiotem-
poral correlations of the output field of the SU(1,1) interfer-
ometer in the low-gain regime.

2. High-gain regime

In the high-gain regime, the initial classical “vacuum”
A∗

i (qi, ωi, 0) will first be amplified over the length L of crys-
tal 1 to A∗

i (qi, ωi, L), which then seeds the DFG process in
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crystal 2. In order to quantify the growth of the classical
“vacuum”, we define A∗

i (qi, ωi, z) = f (z)A∗
i (qi, ωi, 0), differ-

entiate Eq. (4b) with respect to z, and make the “narrow-band
pump” approximation to obtain

∂2 f (z)

∂z2
+ i�k̄z

∂ f (z)

∂z
− Ḡ2(ρ, t ) f (z) = 0. (30)

Solving the above Eq. (30) subject to the initial conditions
f (z = 0) = 1 and ∂ f (z)/∂z|z=0 = 0, we obtain

f (z) = e−i�k̄zz/2

{
cosh 	(�k̄z, ρ, t )z

+ i�k̄z

2	(�k̄z, ρ, t )
sinh 	(�k̄z, ρ, t )z

}
. (31)

The above relation quantifies the growth of the classical “vac-
uum” inside crystal 1.

We now note that the generated field in crystal 2 will
be governed by Eq. (12). Moreover, the field As(qs, ωs, z′ =
0) at the entrance of crystal 2 is given by Eq. (14) as
the field remains constant through the air gap. In addition,
∂As(qs, ωs, z′)/∂z′|z′=0 can be evaluated using Eq. (26). Solv-
ing Eq. (12) for the above initial conditions, we obtain (see
Appendix B 4 for details)

As(qs, ωs) = 4ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t )

× e−i(qp·ρ−ωpt ) A∗
i (qi, ωi, 0)

[
sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

]

× ei(�kz−�k̄z/2)L h
(
�k(air)

z , D
)
, (32)

where we have defined

h
(
�k(air)

z , D
)

≡ ei�k(air)
z D/2

[
cosh 	(�k̄z, ρ, t )L cos

{
�k(air)

z D/2
}

− �k̄z

2	(�k̄z, ρ, t )
sinh 	(�k̄z, ρ, t )L

× sin
{
�k(air)

z D/2
}]

. (33)

Using the above relations and Eq. (8), we obtain

〈As(qs, ωs)A∗
s (q′

s, ω
′
s)〉

= 2h̄ωi0d2
effω

2
s ω

′
s
2

(2π )4ε0kszk′
szc

4

∫∫
dρ dt

× 〈|Vp(ρ, t )|2〉 e−i[(qs−q′
s )ρ−(ωs−ω′

s )t]

×
[

sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ, t )L

	(�k̄′
z, ρ, t )

]

× h̄
(
�k(air)

z , D
)

h̄∗(�k′(air)
z , D

)
ei(�k̄z−�k̄′

z )L/2. (34)

The above equation quantifies the second-order spatiotempo-
ral correlations of the output field of the SU(1,1) interferome-
ter in the high-gain regime.

FIG. 7. SU(1,1) far-field interference patterns in the low- and
high-gain regimes for increasing air gap lengths.

3. Numerical simulations in the spatial domain

We fix the frequency variables by restricting our atten-
tion to degenerate SPDC with a monochromatic pump, and
suppress those variables for brevity. This restriction physi-
cally corresponds to placing a narrow-band filter centered at
the degenerate emission wavelength after the second crystal.
We numerically simulate collinear degenerate SPDC for the
same parameters used in Sec. III A. For computing the phase
mismatch �kair

z , we use the dispersion relation for air from
Ref. [65], according to which the refractive index of air for the
pump wavelength 355 nm is nair

p = 1.00028571, and that for
the signal (idler) wavelength 710 nm is nair

s(i) = 1.00027571.
We use Eq. (29) and �kz = |qs − qi|2/4ks to compute the
low-gain interference patterns, and use Eq. (34) to compute
the high-gain interference patterns for different air gap lengths
and depict them in Fig. 7. It is evident that in both gain
regimes, the interference exhibits high visibility. In compar-
ison to the low-gain patterns, the high-gain patterns have
narrower extent and suppressed side-lobes. Moreover, with
increasing air gap, the fringe separation reduces, and owing
to the finite dispersion of air, the intensity at the center also
varies. These predictions agree with previous experimental
observations [31,66].

B. Induced coherence

In their seminal 1991 experiment [11], Zou, Wang, and
Mandel built a modified SU(1,1) interferometric setup in
which the signal fields from the two crystals were separated
and superposed on a beamsplitter. Ordinarily, the signal fields
from two distinct SPDC processes do not interfere with each
other. However, Zou et al. [11] observed that when the idler
paths from the two processes are aligned, the signal fields
become mutually coherent and exhibit interference. This in-
triguing effect known as “induced coherence” has not only
revealed fundamental insights about interference and indistin-
guishability [11,67], but has also been harnessed in a variety
of applications such as imaging [43] and spectroscopy [68].

The physical origin of induced coherence has been
extensively debated over the years since its inception
[11,67,69–72]. In particular, the possibility of the coherence
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originating from “induced emission”, i.e., the idler photons
from the first crystal stimulating emission in the second crys-
tal, was recognized [11,67]. Zou et al. ruled out this possibility
by performing their experiment at weak pump power where
induced emission could be shown to be negligible. They
argued that the induced coherence is a consequence of the
signal photon paths being rendered indistinguishable by the
alignment of the idler paths. Their theoretical analysis also
supported this quantum interpretation by correctly predicting
the experimentally-observed linear scaling of the interference
visibility with respect to the transmittance of an object placed
in the idler path between the crystals. Subsequently, Wiseman
and Mølmer [70] performed a four-mode quantum calculation
for arbitrary pump strengths and showed that the linear scaling
of the visibility is the true signature of induced emission being
negligible, and that the scaling is not linear when induced
emission is significant. Moreover, they termed the former
regime as “quantum”, and the latter regime as “classical”.
Thus, it was implied that induced coherence without induced
emission is an intrinsically quantum-mechanical effect with
no classical explanation.

In more recent years, with the series of intriguing
experimental demonstrations of “quantum imaging with unde-
tected photons” [43], “quantifying the momentum correlation
between two light beams by detecting one” [73], and “inter-
ference fringes controlled by noninterfering photons” [74],
the question of whether induced coherence admits a classi-
cal explanation has gained renewed interest. While imaging
with undetected light has been demonstrated in classical set-
tings where an auxiliary external field stimulates the emission
in both crystals [75,76], it was explicitly stated that the
case of spontaneous low-gain emission cannot be explained
within classical physics [76]. Subsequently, a theoretical study
showed that induced coherence persists even when the pump
field is a single photon Fock state, where the occurrence of
stimulated emission is strictly impossible [72]. Based on this
result, the authors concluded that any classical or semiclassi-
cal explanation of induced coherence is effectively ruled out.
Nevertheless, we submit that their study does not preclude the
existence of a classical model that successfully captures the
various induced coherence-related experiments that have been
performed so far in which the pump can be treated classically.
In what follows, we show that the classical SPDC model of
the present paper captures several important experimentally
observed features of induced coherence in low- and high-
gain regimes, including the linear scaling of the visibility
for low gain that is often regarded as the signature quantum
feature of induced coherence. We emphasize that our classical
model does not constitute a complete classical explanation,
and therefore, our results do not contradict Ref. [72] in any
manner.

In Fig. 8, we depict the conceptual schematic of a proto-
typical induced coherence experiment involving two identical
crystals as interpreted in the classical SPDC model of the
present paper. The pump field is split into two equal parts:
one part pumps crystal 1; the other part acquires a uniform
phase φ0 and pumps crystal 2. A classical “vacuum” field
Ai seeds the process in crystal 1 and then encounters the
object O that is assumed to have a complex field transmittance
Teiγ . The object O is modeled as a beamsplitter of splitting

FIG. 8. Conceptual schematic of the induced coherence ex-
periment [11] interpreted in classical SPDC. Here, the partially-
transmissive object O is modeled as a beamsplitter.

ratio T :
√

1 − T 2 with a second classical “vacuum” Bi that
is completely uncorrelated with the first classical “vacuum”
Ai entering its other port. The output superposition of the
two “vacua” from this hypothetical beamsplitter then seeds
the process in crystal 2. The fields As1 and As2 generated
from the two crystals 1 and 2 are superposed on a perfectly
symmetric 50:50 beamsplitter and the interference is recorded
on a CCD camera. We emphasize that Fig. 8 must be viewed
as a conceptual depiction because the actual geometry of the
setup can be entirely different. For instance, the experiment
can also be implemented using collinear phase matching [43],
but the underlying concept remains the same. In what follows,
we fix the temporal variables by assuming degenerate SPDC
with a quasimonochromatic pump, and derive the output spa-
tial interference patterns recorded in the induced coherence
experiment in low- and high-gain regimes.

1. Low-gain regime

In the low-gain regime, the growth of the “vacuum”
A∗

i (qi, 0) can be neglected. Using Eq. (5), the generated fields
from the two crystals can then be written as

As1(qs) = Karb

ksz

∫
dqi Ap(qp)A∗

i (qi, 0) sinc(�kzL/2)

× ei�kzL/2, (35a)

As2(qs) = Karb

ksz

∫
dqi Ap(qp) eiφ0 sinc(�kzL/2)

× ei�kzL/2[T eiγ A∗
i (qi, 0) +

√
1 − T 2 B∗

i (qi, 0)],

(35b)

The above fields overlap at the beamsplitter to yield the
field As(qs) = {As1(qs) + As2(qs)}/√2 at the CCD camera.
We now note that Bi has the same autocorrelations as that of
Ai, i.e., 〈Bi(q′

i, 0)B∗
i (qi, 0)〉 = 〈Ai(q′

i, 0)A∗
i (qi, 0)〉 = Cδ(qi −

q′
i ), where C is a scaling factor. However, Bi has no mutual

correlations with Ai, i.e., 〈Ai(q′
i, 0)B∗

i (qi, 0)〉 = 0. Using these
relations, the measured intensity takes the form

I = 〈|As(qs)|2〉 = Karb

k2
sz

∫
dqi|Ap(qp)|2 sinc2(�kzL/2)

× {1 + T cos (γ + φ0)}, (36)
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FIG. 9. Numerical simulations of a case similar to the one stud-
ied by Lemos et al. [43], where the object O has a binary structured
transmission profile T . As shown in (a), we assume T (qi ) shaped
in the Greek symbol �. (b) and (c) are interferograms obtained
for φ0 = 0 and φ0 = π , respectively. (d) and (e) are the sum and
difference images, respectively.

In general, the transmittance T and phase γ could be spatially-
structured, in which case they would explicitly depend on
qi. However, when T and γ are uniform, the visibility
V (qs) = (Imax − Imin)/(Imax + Imin) scales linearly with T , in
agreement with the quantum-mechanical prediction and ex-
perimental observations [11,67]. Thus, our classical model is
able to correctly predict the linear scaling of the visibility with
object transmittance in the low-gain regime—a feature that is
often regarded as the quintessential signature of nonclassical-
ity. We will now theoretically analyze two special cases of the
object O within our classical model.

We first consider the case where the object O has a bi-
nary structured transmission profile T (qi ) and constant phase
γ = 0 similar to the one studied by Lemos et al. [43]. Specif-
ically, as shown in Fig. 9(a), we assume that T (qi ) has the
shape of the Greek symbol �. We assume collinear degenerate
SPDC with the same parameters as chosen in Sec. III A. Using
Eq. (36), we numerically compute the interferograms for φ0 =
0 and φ0 = π and depict them in Figs. 9(b) and 9(c), respec-
tively. The sum and difference images of these interferograms
are depicted in Figs. 9(d) and 9(e), respectively. We note that
the interferograms in Figs. 9(b) and 9(c) display the object
O even though the interfering signal fields themselves have
not directly interacted with the object, whereas the classical
“vacuum” that has directly interacted with the object is never
detected. This intriguing phenomenon was termed “quantum
imaging with undetected photons” in Lemos et al. [43], and
was explained in terms of the quantum-mechanical interpre-
tation of induced coherence. Here, it is evident that the same
feature is also captured within our classical model. We em-
phasize that while other studies have previously demonstrated
this feature in classical settings involving a real external stim-
ulating field [75,76], to our knowledge, this is the classical
treatment applied to the spontaneous low-gain limit in which
Zou et al. [11,67] and Lemos et al. [43] performed their
experiments.

Next, we consider the case studied by Hochrainer et al. [73]
in which the object O is a lens—a pure phase object with T =
1 and γ = λid |qi|2/(4π ) as depicted in Fig. 10(a). We set the

FIG. 10. Numerical low-gain simulations of the case considered
in A. Hochrainer et al. [73], where object O is a lens with T = 1.
(a) depicts the phase γ ∼ |qi|2 modulo 2π . [(b)–(e)] Depict inter-
ference patterns for increasing pump beam-waist wp. (f) Depicts the
visibility V (qsx ) computed along a horizontal slice, as shown in (b),
through the center of the interferograms by varying the phase φ0 from
0 to 2π , and (g) depicts the scaling of the FWHM of the visibility
profiles with wp.

equivalent free-space propagation distance d = 22.6 mm in
our analysis, and study the interference for different values of
the pump beam-waist wp. The other parameters are chosen
to be the same as those used in Sec. III A. In Fig. 10, we
depict our numerical simulations of Eq. (36) corresponding
to the low-gain regime. As shown in (b)–(e) for small values
of wp, the interference is blurred out away from the center,
whereas for large values of wp, the interference exhibits sharp
contrast even for large radial distances. This effect can be
interpreted in our classical model as follows: For small wp,
the pump has a large angular bandwidth, implying a large
spread in qp. Consequently, the far-field intensity at qs is
a superposition of a large number of interference patterns
corresponding to several different qi that satisfy qi = qp − qs.
As a result, the interference pattern is blurred. On the other
hand, for large wp, the pump’s angular bandwidth is small,
and consequently, the averaging effect is less pronounced
leading to high interference visibility. For different values
of wp, we then compute the visibility V (qs) along a hori-
zontal slice, as shown in Fig. 10(b), through the center by
numerically varying the phase φ0 from 0 to 2π . As shown
in Fig. 10(f), for small wp, the visibility decays rapidly in
the radial directions, whereas the decay is slower for larger
wp. In Fig. 10(f), we plot the FWHM of the visibility curves
for increasing wp along with a linear fit. This implies that the
interference visibility can be used to infer the pump’s angular
bandwidth which, in the usual quantum-mechanical picture
of SPDC, also determines the transverse momentum corre-
lations between the signal and idler photons. Therefore, the
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visibility can be used for “quantifying the momentum
correlations between two photons by detecting one”, as ex-
perimentally demonstrated by Hochrainer et al. [73]. Here,
we find that our above results qualitatively agree with those
depicted in Fig. 2 of Ref. [73], but the interpretation is classi-
cal within our model.

2. High-gain regime

In the high-gain regime, the initial “vacuum” A∗
i (qi, 0)

is amplified in crystal 1 to A∗
i (qi, L) = A∗

i (qi, 0) f (L), which
then superposes with the “vacuum” B∗

i (qi, 0) from the other
port of O to seed crystal 2. Using Eqs. (14) and (31), the fields
from the two crystals can be written as

As1(qs) = Karb

ksz

∫∫
dqi dρVp(ρ) e−iqp·ρ ei(�kz−�k̄z/2)L

× A∗
i (qi, 0)

[
sinh 	(�k̄z, ρ)L

	(�k̄z, ρ)

]
, (37a)

As2(qs) = Karb

ksz

∫∫
dqi dρVp(ρ) e−i(qp·ρ−φ0 )

× ei(�kz−�k̄z/2)L

[
sinh 	(�k̄z, ρ)L

	(�k̄z, ρ)

]

× [T eiγ A∗
i (qi, 0) f (L) +

√
1 − T 2 B∗

i (qi, 0)].

(37b)

The above fields overlap at the beamsplitter to yield the field
As(qs) = {As1(qs) + As2(qs)}/√2, and the measured intensity
at the CCD camera takes the form

〈|As(qs)|2〉 = Karb

k2
sz

∫
dρ 〈|Vp(ρ)|2〉

∣∣∣∣ sinh 	(�k̄z, ρ)L

	(�k̄z, ρ)

∣∣∣∣
2

× [1 + T̄ 2| f (L)|2 + 2 T̄ | f (L)|
× cos{arg f (L) + γ̄ + φ0} + (1 − T̄ 2)]. (38)

As seen in the above expression, when | f (L)| � 1, the terms
quadratic in T̄ do not cancel, and as a result, the visibility
V (qs) is not linear in T̄ .

We numerically study the effect of increasing pump
strength on the spatial interference. For simplicity, we now
assume the object is no longer structured, but has a uni-
form transmittance T , and compute the behavior of the
visibility for increasing pump strengths. We assume collinear

FIG. 11. (a) Depicts the interference visibility, and (b) depicts the
degree of coherence |μ(qs )| as a function of object transmittance T
for different pump amplitudes g (in arb units).

degenerate SPDC with the same parameters chosen in
Sec. III A. In Fig. 11(a), we depict the visibility with respect
to transmittance for different pump strengths g computed by
numerically varying φ0 from 0 to 2π in Eq. (38). While
the visibility has a linear dependence on transmittance for
g = 0.01 in the low-gain regime, the dependence is in gen-
eral neither linear nor monotonic for g = 1.01 and g = 2.01
that correspond to the high-gain regime. The latter fact may
be understood as follows: For T = 0, the fields As1(qs) and
As2(qs) are equal in magnitude, but have no mutual coherence,
and consequently, the visibility vanishes. However, for T > 0,
the visibility increases with respect to T until some critical
value, but when the classical “vacuum” seeding the second
crystal is stronger than that seeding the first crystal, the field
As2(qs) is stronger than the field As1(qs), which causes the
visibility to decrease. This behavior of the visibility in the
high-gain regime has also been predicted in existing quantum
calculations for a monochromatic plane-wave pump [69–71].

At this juncture, one can ask whether the decline in
visibility is only due to the disproportion of the overlap-
ping fields As1(qs) and As2(qs) or whether there is also a
simultaneous reduction in the degree of their mutual coher-
ence. This question is important from a practical standpoint
in the context of imaging because in the former case, the
fields As1(qs) and As2(qs) can be equalized in magnitude
by suitably attenuating As2(qs) to realize perfect visibility
[69,71], whereas in the latter case, the visibility cannot
be optimized beyond |μ(qs)|, where the mutual degree
of coherence μ(qs) is defined as μ(qs) ≡ 〈A∗

s1(qs)As2(qs)〉/√〈As1(qs)A∗
s1(qs)〉〈As2(qs)A∗

s2(qs)〉. Using Eqs. (37), we ob-
tain

μ(qs) =
∫

dρ 〈|Vp(ρ)|2〉| �(�k̄z, ρ, L)|2 f (L) T̄ eiγ̄√∫
dρ 〈|Vp(ρ)|2〉| �(�k̄z, ρ, L)|2

√∫
dρ 〈|Vp(ρ)|2〉| �(�k̄z, ρ, L)|2{1 + T̄ 2(| f (L)|2 − 1)}

, (39)

where �(�k̄z, ρ, L) ≡ sinh 	(�k̄z, ρ, L)/	(�k̄z, ρ, L). It
may be verified that Eq. (39) is consistent with previous
theoretical calculations for a monochromatic plane-wave
pump [70,71]. We compute and plot the behavior of |μ(qs)|
with respect to transmittance T in Fig. 11(b) for different
pump amplitudes. In much similarity with the monochromatic
plane-wave pump case [70,71], |μ(qs)| scales linearly with
T for low gain, but the scaling does not remain linear for

increasing gain. Nevertheless, μ(qs) remains very high even
for large gain, therefore allowing the possibility to realize
imaging with high visibility by means of attenuation. There is
a small discrepancy from perfect coherence in the high-gain
regime for unity transmittance, i.e., μ(qs) < 1 for T = 1.
In fact, it is evident from Eq. (39) that owing to the explicit
dependence of f (L) on ρ, in general |μ(qs)| �= 1 for T = 1.
However, we are unable to ascertain if this discrepancy is a
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genuine physical effect, or an artifact of the “narrow-band”
approximation because the discrepancy vanishes for the
monochromatic plane-wave pump case.

V. SUMMARY AND OUTLOOK

We describe a classical model that simulates SPDC as
DFG of the pump field with a hypothetical stochastic field
that mimics the effect of vacuum fluctuations. We show that
the second-order spatiotemporal correlations of the field gen-
erated from DFG replicate those of the signal field from
SPDC. In particular, for low gain, the second-order correla-
tions predicted by the model are identical to those predicted
by the quantum calculation of the reduced density matrix of
the signal photon, whereas for high gain, we present experi-
mental measurements of the far-field intensity profile, OAM
spectrum, and the wavelength spectrum for increasing pump
strengths and demonstrate their agreement with the model’s
predictions. The far-field intensity profile and wavelength
spectrum exhibit broadening, whereas the OAM spectrum
exhibits narrowing with increasing gain.

Next, we use the model to theoretically analyze second-
order interference in SU(1,1) interferometers and induced
coherence experiments. We derive analytical expressions for
the second-order spatiotemporal correlations of the output
field of a prototypical SU(1,1) interferometer, and illus-
trate some salient features of the interference in the spatial
domain through numerical simulations. We then apply the
model to the induced coherence experiment, and derive
expressions for spatial interference in the low- and high-
gain regimes. Interestingly, the model correctly predicts the
experimentally-observed linear scaling of the visibility with
object transmittance in the spontaneous low-gain limit—a
feature that is often regarded as the quintessential signature
of the nonclassicality of induced coherence. We then ap-
ply the model to numerically analyze the intriguing induced
coherence-related phenomena known as “quantum imaging
with undetected photons” [43] and “quantifying the momen-
tum correlation between two light beams by detecting one”
[73]. Finally, we analyze the behavior of visibility and degree
of mutual coherence of the interfering fields in the high-gain
regime for increasing pump strengths. We find the behavior to
be consistent with previous studies that assumed a monochro-
matic plane-wave pump [70,71].

In the future, our paper may potentially pave the way to-
wards a better understanding of the classical-quantum divide
in the context of SPDC and induced coherence. The model
itself could be viewed as a specific application of stochastic
electrodynamics—a broader research program that attempts

to explain a variety of quantum electrodynamic phenomena
by positing the existence of a classical stochastic background
radiation field that statistically mimics the zero-point vacuum
fluctuations [77–81]. It may be possible to push the model
further to investigate higher-order correlations and other ef-
fects related to SPDC, SU(1,1) interference, and induced
coherence, which could potentially shed light on the limits
to which classical physics can be used to approximate the
quantum world. In this context, we note that an important
artefact of the present model is that it assumes the existence of
a classical “vacuum” only in the idler channel, which breaks
the signal-idler symmetry that is inherent in Eqs. (4) and
the full quantum-mechanical picture of SPDC. But it may be
possible to derive an analogous classical model that retains the
signal-idler symmetry by assuming the existence of classical
“vacuum” fields in both, the signal and idler channels, and it
would be interesting to explore if such a symmetric classical
model might be able to predict additional phenomena that are
beyond the purview of the present model.

In addition to fundamental implications, our paper may
also have significant practical applicability. Our model can
be a useful theoretical tool for analyzing high-gain SPDC
[30,31,55,61] and induced coherence experiments [43,73,74].
Moreover, using the connection between Schmidt decomposi-
tion in quantum theory and the coherent-mode decomposition
in classical coherence theory [34,56], our model can be used
to extract important properties of the global quantum state
such as the Schmidt spectrum and Schmidt modes [82]. A
precise knowledge of these properties may not only lead to
a better quantitative understanding of high-dimensional mul-
tiphoton entanglement of the high-gain SPDC field [83], but
may also inform experiments aimed at harnessing the underly-
ing correlations for applications in imaging [18,19], quantum
state preparation [20], phase metrology [60], radiation shap-
ing [61], microscopy [62], sensing [64], and spectroscopy
[68].
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APPENDIX A: DERIVATION OF THE DFG EQUATIONS

Upon substituting Eqs. (1) and (3) into (2), we obtain

[
∇2 + n2

jω
2
j

c2

] ∫
dq jA j (q j, ω j, z) ei(q j ·ρ+k jzz) = −4deffω

2
j

c2

∫∫∫
dωp dqp dql Ap(qp, ωp) A∗

l (ql , ωl , z)ei[(qp−ql )·ρ+(kpz−klz )z],

(A1)
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for j = s(i) and l = i(s). We first focus only on the left-hand side of the above equation. Using ∇ ≡ (∇⊥, ∂/∂z) and |k j | =
njω j/c =

√
|q j |2 + k2

jz and simplifying, we obtain

∫
dq j (|k j |2 − |q j |2) Aj (q j, ω j, z) ei(q j ·ρ+k jzz) + ∂

∂z

∫
dq j

[
∂Aj (q j, ω j, z)

∂z
+ ik jzA j (q j, ω j, z)

]
ei(q j ·ρ+k jzz)

=
∫

dq j

{
k2

jz A j (q j, ω j, z) ei(q j ·ρ+k jzz) +
[
∂2Aj (q j, ω j, z)

∂z2
+ 2ik jz

∂Aj (q j, ω j, z)

∂z
− k2

jzA j (q j, ω j, z)

]
ei(q j ·ρ+k jzz)

}
.

We make the slowly-varying envelope approximation ∂2

∂z2 Aj (q j, ω j, z) � k jz
∂
∂z A j (q j, ω j, z), use a different dummy variable q′

j
instead of q j , and equate to the right-hand side of Eq. (A1) to obtain∫

dq′
j 2ik′

jz

∂Aj (q′
j, ω j, z)

∂z
ei(q′

j ·ρ+k′
jzz) = −4deffω

2
j

c2

∫∫∫
dωp dqp dql Ap(qp, ωp) A∗

l (ql , ωl , z) ei[(qp−ql )·ρ+(kpz−klz )z].

Multiplying both sides by e−iq j ·ρ and integrating with respect to ρ over the transverse extent of the crystal, we obtain∫∫
dρ dq′

j 2ik′
jz

∂Aj (q′
j, ω j, z)

∂z
ei[(q′

j−q j )·ρ+k′
jzz]

= −4deffω
2
j

c2

∫
dρ

∫∫∫
dωp dqp dql Ap(qp, ωp) A∗

l (ql , ωl , z)ei[(qp−ql −q j )·ρ+(kpz−klz )z].

We now assume that the transverse extent of the crystal is much larger than the pump spot-size and therefore, the integration
over ρ can be performed over the entire infinite range of ρ to yield∫

dq′
j 2ik′

jz

∂Aj (q′
j, ω j, z)

∂z
eik′

jzzδ(q′
j − q j ) = −4deffω

2
j

c2

∫∫∫
dωp dqp dql Ap(qp, ωp) A∗

l (ql , ωl , z) ei(kpz−klz )zδ(qp − ql − q j ),

where the Dirac delta relation on the right-hand side expresses conservation of transverse momentum, i.e., qp = qs + qi. Using
ωp = ωs + ωi and �kz = kpz − ksz − kiz, the above equation can be simplified to yield

∂Aj (q j, ω j, z)

∂z
= 2ideffω

2
j

k jzc2

∫∫
dωl dql Ap(qp, ωp)A∗

l (ql , ωl , z)ei�kzz,

which represents Eq. (4a) for ( j, l ) = (s, i), and Eq. (4b) for ( j, l ) = (i, s) upon complex conjugation.

APPENDIX B: DETAILED CALCULATIONS FOR THE HIGH-GAIN REGIME

1. Derivation of the second-order differential equation (12) for the signal field

Upon substituting Eq. (10) into Eqs. (4), we obtain

∂As(qs, ωs, z)

∂z
= 2ideffω

2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt )A∗

i (qi, ωi, z)ei�kzz, (B1a)

∂A∗
i (qi, ωi, z)

∂z
= −2ideffω

2
i

(2π )3kizc2

∫∫∫∫
dωs dqs dρ dt V ∗

p (ρ, t ) ei(qp·ρ−ωpt )As(qs, ωs, z)e−i�kzz. (B1b)

We now consider the right-hand side of Eq. (11)

2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dtVp(ρ, t )e−i(qp·ρ−ωpt ) ei�kzz

[
∂A∗

i (qi, ωi, z)

∂z
+ i�kzA

∗
i (qi, ωi, z)

]

= 4d2
effω

2
s ω̄

2
i

(2π )6kszk̄izc4

∫∫∫∫
dωi dqi dρ dt

∫∫∫∫
dω′

s dq′
s dρ′ dt ′Vp(ρ, t )V ∗

p (ρ′, t ′)e−i[(qp·ρ−q′
p·ρ′ )−(ωpt−ω′

pt ′ )]As(q′
s, ω

′
s, z)

× ei(�kz−�k′
z )z + i�k̄z

2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt )A∗

i (qi, ωi, z)ei�kzz

= 4d2
effω

2
s ω̄

2
i

(2π )6kszk̄izc4

∫∫∫∫
dωi dqi dρ dt

∫∫∫∫
dω′

s dq′
s dρ′ dt ′Vp(ρ, t )V ∗

p (ρ′, t ′)e−i[(qs·ρ−q′
s·ρ′ )−(ωst−ω′

st
′ )+qi (ρ−ρ′ )−ωi (t−t ′ )]

× As(q′
s, ω

′
s, z)ei(�kz−�k′

z )z + i�k̄z
∂As(qs, ωs, z)

∂z
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= 4d2
effω

2
s ω̄

2
i

(2π )3kszk̄izc4

∫∫
dρ dt

∫∫∫∫
dω′

s dq′
s dρ′ dt ′Vp(ρ, t )V ∗

p (ρ′, t ′)e−i[(qs·ρ−q′
s·ρ′ )−(ωst−ω′

st
′ )]δ(ρ − ρ′)δ(t − t ′)As(q′

s, ω
′
s, z)

× ei(�kz−�k′
z )z + i�k̄z

∂As(qs, ωs, z)

∂z

= 4d2
effω

2
s ω̄

2
i

(2π )3kszk̄izc4

∫∫
dρ dt

∫∫
dω′

s dq′
s |Vp(ρ, t )|2e−i[(qs−q′

s )·ρ−(ωs−ωs )t] As(q′
s, ω

′
s, z) ei(�kz−�k′

z )z + i�k̄z
∂As(qs, ωs, z)

∂z

= 4d2
effω

2
s ω̄

2
i

kszk̄izc4
|Vp(ρ, t )|2

∫∫
dω′

s dq′
s δ(qs − q′

s) δ(ωs − ωs) As(q′
s, ω

′
s, z) ei(�kz−�k′

z )z + i�k̄z
∂As(qs, ωs, z)

∂z

= 4d2
effω

2
s ω̄

2
i

kszk̄izc4
|Vp(ρ, t )|2 As(qs, ωs, z) + i�k̄z

∂As(qs, ωs, z)

∂z
.

We note that in the second-last step of the above calculation, we have used the fact that the pump intensity profile |Vp(ρ, t )|2
has a very slow variation with respect to ρ and t due to our assumption that the frequency and angular bandwidth of the pump
is much smaller than that of the generated field. Consequently, the function |Vp(ρ, t )|2 could be taken out of the integral. Upon
shifting the above result to the left-hand side of Eq. (11), we obtain Eq. (12).

2. Solution of the second-order differential equation (12) for the signal field

Substituting an ansatz solution of the form As(qs, ωs, z) = erz into Eq. (12), we obtain r2 − i�k̄zr − Ḡ2(ρ, t ) = 0, which
has the roots r± = i�k̄z/2 ± 	(�k̄z, ρ, t ), where 	(�k̄z, ρ, t ) is defined by Eq. (15). The general solution then takes the form
As(qs, ωs, z) = Cer+z + Der−z, where C and D are scaling factors to be determined by initial conditions. The first condition
As(qs, ωs, z = 0) = 0 implies C + D = 0, and the value of ∂As(qs, ωs, z)/∂z|z=0 obtained by evaluating Eq. (B1a) for z = 0
yields

C = ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt

Vp(ρ, t )

	(�k̄z, ρ, t )
e−i(qp·ρ−ωpt )A∗

i (qi, ωi, 0).

We again use the approximation that the function 	(�k̄z, ρ, t ) from its dependence on |Vp(ρ, t )|2 has a very slow variation
with respect to ρ and t . The above relation then implies As(qs, ωs, z) = 2C ei�k̄zz/2 sinh[	(�k̄z, ρ, t )z], which yields Eq. (14) for
z = L.

3. Evaluating the high-gain spatiotemporal correlation function of the signal field

Using Eq. (14), we evaluate

〈As(qs, ωs, z)A∗
s (q′

s, ω
′
s, z)〉 = 4d2

effω
2
s ω

′
s
2

(2π )6kszk′
szc

4

∫∫∫∫
dωi dqi dρ dt

∫∫∫∫
dω′

i dq′
i dρ′ dt ′〈Vp(ρ, t )Vp(ρ′, t ′)〉

× e−i[(qp·ρ−q′
p·ρ′ )−(ωpt−ω′

pt ′ )] 〈A∗
i (qi, ωi, 0)Ai(q′

i, ω
′
i, 0)〉

[
sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ
′, t ′)L

	(�k̄′
z, ρ′, t ′)

]
ei[(�kz−�k′

z )+(�k̄z−�k̄′
z )/2]L

= 4d2
effω

2
s ω

′
s
2

(2π )6kszk′
szc

4

∫∫∫∫
dωi dqi dρ dt

∫∫∫∫
dω′

i dq′
i dρ′ dt ′〈Vp(ρ, t )Vp(ρ′, t ′)〉 e−i[(qp·ρ−q′

p·ρ′ )−(ωpt−ω′
pt ′ )]

× h̄ωi

8πε0
δ(qi − q′

i )δ(ωi − ω′
i )

[
sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ
′, t ′)L

	(�k̄′
z, ρ′, t ′)

]
ei[(�kz−�k′

z )+(�k̄z−�k̄′
z )/2]L

= 4d2
effω

2
s ω

′
s
2

(2π )6kszk′
szc

4

∫∫∫∫
dωi dqi dρ dt

h̄ωi

8πε0

∫∫
dρ′ dt ′〈Vp(ρ, t )Vp(ρ′, t ′)〉 e−i[(qs·ρ−q′

s·ρ′ )−(ωst−ω′
st

′ )]ei[qi·(ρ−ρ′ )−ωi (t−t ′ )]

×
[

sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ
′, t ′)L

	(�k̄′
z, ρ′, t ′)

]
ei[(�kz−�k′

z )+(�k̄z−�k̄′
z )/2]L

= h̄ωi0d2
effω

2
s ω

′
s
2

(2π )4ε0kszk′
szc

4

∫∫
dρ dt

∫∫
dρ′ dt ′〈Vp(ρ, t )Vp(ρ′, t ′)〉 e−i[(qs·ρ−q′

s·ρ′ )−(ωst−ω′
st

′ )]δ(ρ − ρ′)δ(t − t ′)

×
[

sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ
′, t ′)L

	(�k̄′
z, ρ′, t ′)

]
ei(�k̄z−�k̄′

z )L/2

= h̄ωi0d2
effω

2
s ω

′
s
2

(2π )4ε0kszk′
szc

4

∫∫
dρ dt〈|Vp(ρ, t )|2〉 e−i[(qs−q′

s )·ρ−(ωs−ω′
s )t]

[
sinh 	(�k̄z, ρ, t )L

	(�k̄z, ρ, t )

][
sinh 	(�k̄′

z, ρ, t )L

	(�k̄′
z, ρ, t )

]
ei(�k̄z−�k̄′

z )L/2,

which is Eq. (16).
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4. Evaluating the output field from the SU(1,1) setup

As the field As(qs, ωs, z′) satisfies Eq. (12), we can assume an ansatz solution of the form As(qs, ωs, z′) = Cer+z′ +
Der−z′

, where r± = i�k̄z/2 ± 	(�k̄z, ρ, t ). Thus, we have C + D = As(qs, ωs, z′ = 0) and Cr+ + Dr− = Ȧs(qs, ωs, z′ = 0) =
∂As(qs, ωs, z′)/∂z|z′=0, which implies C = {Ȧs(qs, ωs, z′ = 0) − r−As(qs, ωs, z′ = 0)}/(r+ − r−) and D = {r+As(qs, ωs, z′ =
0) − Ȧs(qs, ωs, z′ = 0)}/(r+ − r−). Substituting from Eqs. (14) and (26), we obtain

As(qs, ωs, z′ = L) = 2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt ) A∗

i (qi, ωi, 0) ei(�kz−�k̄z/2)L

×
{

e	L

[
ei�k(air)

z D

2	

{
cosh 	L + i�k̄z

2	
sinh 	L

}
+ {	 − i�k̄z/2} sinh 	L

2	2

]

+e−	L

[
{i�k̄z/2 + 	} sinh 	L

2	2
− ei�k(air)

z D

2	

{
cosh 	L + i�k̄z

2	
sinh 	L

}]}

= 2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt ) A∗

i (qi, ωi, 0) ei(�kz−�k̄z/2)L

×
{

ei�k(air)
z D

{
sinh 2	L

2	
+ i�k̄z

2	2
sinh2 	L

}
+ sinh 	L

2	2
(2	 cosh 	L − i�k̄z sinh 	L)

}

= 2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt ) A∗

i (qi, ωi, 0) ei(�kz−�k̄z/2)L

×
{

sinh 2	L

2	

(
1 + ei�k(air)

z D
) − i�k̄z

2

(
sinh 	L

	

)2(
1 − ei�k(air)

z D
)}

= 2ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt ) A∗

i (qi, ωi, 0) ei(�kz−�k̄z/2)L ei�k(air)
z D/2

×
{

sinh 2	L

	
cos

{
�k(air)

z D/2
} − �k̄z

(
sinh 	L

	

)2

sin
{
�k(air)

z D/2
}}

= 4ideffω
2
s

(2π )3kszc2

∫∫∫∫
dωi dqi dρ dt Vp(ρ, t ) e−i(qp·ρ−ωpt ) A∗

i (qi, ωi, 0) ei(�kz−�k̄z/2)L ei�k(air)
z D/2

(
sinh 	L

	

)

×
[

cosh 	L cos
{
�k(air)

z D/2
} − �k̄z

2	
sinh 	L sin

{
�k(air)

z D/2
}]

,

which is Eq. (32).
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