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Fundamental quantum limits in ellipsometry
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We establish the ultimate limits that quantum theory
imposes on the accuracy attainable in optical ellipsome-
try. We show that the standard quantum limit, as usually
reached when the incident light is in a coherent state, can be
surpassed with the use of appropriate squeezed states and,
for tailored beams, even pushed to the ultimate Heisenberg
limit. © 2020 Optical Society of America

https://doi.org/10.1364/OL.392955

Polarization measurements, which in a broad sense can be called
polarimetry, constitute a fundamental ingredient of many opti-
cal measurement techniques [1]. Polarimetry finds conceptual
and practical applications in virtually every branch of science
and technology.

Polarimetry is performed using a combination of wave plates
and polarizers that enable direct measurements of Stokes param-
eters. Exhaustive research has been performed over the years on
optimizing polarimetric setups [2,3], and the associated sources
of errors have been thoroughly identified. However, in all these
analyses, light is assumed to be a nonfluctuating classical field,
and so the errors are related exclusively to imperfections in the
setup. In other words, all of them involve technical noise that,
in principle, can be eliminated with a proper refinement of the
setup.

Modern schemes often involve accurate polarization mea-
surements at faint light levels, even with single photons [4,5]. In
these circumstances, quantum fluctuations of light cannot be
neglected. Actually, quantum polarimetry [6], as concerning the
quantized Stokes variables, also examines the ultimate quantum
limits of their measurements [7].

In this Letter, we focus on ellipsometry, whose bases are
deeply intertwined with polarimetry. However, instead of Stokes
parameters, the basic quantity in ellipsometric measurements is
the ellipsometric functionρ:

ρ =
r p

r s
= e i1 tanψ, (1)

where rσ (σ ∈ {p, s}) are the sample’s reflection coefficients
for a plane wave with the electric field polarized parallel to the
plane of incidence (p) or perpendicular to it (s). The parameter

1 is the differential phase shift between the p and s compo-
nents upon reflection, and tanψ is their amplitude ratio. Both
ψ and 1 (and, hence, ρ) can be determined directly with
standard setups. Note carefully that ρ involves only amplitude
information, in contradistinction to Stokes polarimetry.

Using a model-based approach, ellipsometry can determine a
range of properties (including layer thickness, refractive index,
morphology, and chemical composition) for films ranging in
thickness from a few angstroms to several tens ofµm [8].

For a structure of m layers, the amplitude coefficients rσ can
be calculated by resorting to the transfer-matrix formalism [9].
For a fixed angle of incidence and wavelength, rσ depend on the
material parameters (ni ) and layers thicknesses (di ), so that one
gets an involved relation: ρ = ρ(n1, . . . , nm, d1, . . . , dm). To
infer the parameters describing the structure, this relation has to
be inverted [10].

Our aim here is to analyze how the quantum nature of
light affects the precision of ellipsometric measurements.
Surprisingly, these ultimate limits have not been previously
examined. In particular, we are concerned with the scaling of
quantum noise with the total number of photons.

To introduce our model, we start by rewritingρ as

ρ =
rps

aps
=

R p/Rs

A p/As
, (2)

where rps and aps are the amplitude ratios, in the linear polari-
zation bases p and s, for the reflected (Rσ ) and the incident (Aσ )
fields, respectively.

Our plan involves finding the proper translation of Eq. (2)
into the quantum domain. This would require replacing the
complex amplitudes by their appropriate quantum counter-
parts. Before doing so, we observe that, since an ideal specular
reflection multiplies the field only by a complex number, the
fluctuations of the reflected field are due entirely to the fluctua-
tions of the incident one. After all, ellipsometry, as its very name
indicates, is based on the accurate determination of the polariza-
tion ellipse: if we ignore any quantum dipole fluctuations of the
material system, the quantum limits are thus exclusively ruled by
aps, which we shall consider henceforth.

Apart from constant factors, of no relevance here, we can
replace the classical amplitudes Aσ with the mode annihilation
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operators âσ , which satisfy the bosonic commutation relations
[âσ , â †

σ ′
] = δσσ ′ , (σ, σ ′ ∈ {p, s} as before). We thus have

âps =
â p

â s
= â p â †

s

(
â s â †

s

)−1
= â p â †

s (N̂s + 1)−1, (3)

where N̂σ = â †
σ âσ are the number operators for each basic

polarization mode. Please observe carefully that the quotient
â p/â s is meaningful, since there is no problem with the ordering
of operators. Similar amplitude ratios have been considered
before to deal with quantum polarization [11].

Next, following a well-established procedure [12], we decom-
pose the amplitudes as â p â †

s = Ê [N̂p(N̂s + 1)]1/2, where Ê is
a unitary operator that represents the exponential of the relative
phase between the modes p and s . In this way, we can recast
Eq. (3) as

âps = ÊP̂ , P̂ =

√
N̂p

N̂s + 1
. (4)

Since P̂ is a positive-semidefinite operator, the polar decom-
position Eq. (4) can be seen as the quantum version of the
factorization in Eq. (1) in terms of a phase Ê (which plays the
role of e i1) and a modulus P̂ (analogous to tanψ) [13], applied
to the incident field. Observe that the commutation relations
force the appearance of N̂s + 1 instead or N̂s in the denomi-
nator of P̂ , which breaks an apparent symmetry in the classical
definition ofρ under the interchange of modes p↔ s.

To examine the properties of Ê and P̂ , we introduce two new
operators, N̂ = N̂p + N̂s and L̂ = (N̂p − N̂s )/2, which cor-
respond to the total photon number and (apart from the factor
1/2) the photon number difference between the two modes.
Since [N̂, Ê ] = 0, we can study the restrictions Ê (N) to each
subspace with a fixed number of photons, which have been aptly
termed as Fock layers [14]. If we denote the Fock basis of the two
modes as |m, n〉 = |m〉p ⊗ |n〉s, the restriction Ê (N) turns out to
be [12]

Ê (N)
=

N−1∑
n=0

|n, N − n〉〈n + 1, N − n − 1| + |N, 0〉〈0, N|.

(5)

The extra contribution |N, 0〉〈0, N|, related to the quantum
vacuum, makes Ê (N) unitary in the N-photon layer. The total
operator Ê is obtained by summing over all the Fock layers
Ê =

∑
N Ê (N); it is unitary and defines a Hermitian relative

phase via Ê = exp(i8̂). Interestingly, 8̂has a discrete spectrum:
for each Fock layer, there are N + 1 uniformly distributed eigen-
values in the interval [0, 2π ]. When N is large, this spectrum
becomes dense, and we can take this variable as continuous. This
is the limit we shall consider in what follows, as it is the situation
encountered in most realistic ellipsometric experiments.

To elucidate this situation in more detail, it will prove con-
venient to relabel the Fock basis |m, n〉 in terms of the common
eigenstates of N̂ and L̂ (note that [N̂, L̂] = 0): |N, `〉, with
`=−N/2, . . . , N/2. When N � 1, this basis is effectively
infinite dimensional and, to simplify the notation, we will omit
N and label these states by just |`〉. The action of the unitary

operator Ê in the |`〉 basis is Ê |`〉 = |`− 1〉, and in the rep-
resentation generated by the normalized eigenvectors of Ê ,
we have L̂ 7→−i∂φ and Ê 7→ e iφ as happens for the canonical
pair angle–angular momentum [15].

The relative-phase wave function 9(φ)= 〈φ|9〉 defines a
continuous probability density p(φ)= |9(φ)|2 that is Fourier

related with the basis |`〉, namely, 9(φ)= 1
√

2π

∞∑
`=−∞

e−i`φ9`

with9` = 〈`|9〉.
In principle, every quantum state has an expansion in the

number basis and therefore spans several Fock layers (leaving
aside the number states). Since there are no coherences across
them, when N � 1, we can replace the action of the operator
N̂ by its average N̄. In addition, we take 〈L̂〉� N̄; this happens
when the sample’s reflectivity is high, which holds in most prac-
tical cases. We stress though that this hypothesis simplifies the
calculations, but it is unessential for our results. We have now
that Eq. (4) can be rewritten as

P̂ ' 1+
2

N̄
L̂, (6)

which shows that the relevant variable in this limit is L̂ .
From this perspective, ellipsometry reduces to the simul-

taneous measurement of both Ê and L̂ . If the second
vacuum-related contribution in Eq. (5) can be neglected, we can
use the phase representation. In this limit, these operators satisfy
the commutation relation [Ê , L̂] = Ê , which immediately
leads to an uncertainty relation that reflects the fact that both
magnitudes cannot be simultaneously measured with arbitrary
precision.

Since Ê is unitary, the notion of variance must be accordingly
adapted [16]: 12 Ê = 〈Ê † Ê 〉 − 〈Ê †

〉〈Ê 〉 = 1− |〈Ê 〉|2. This
coincides with the circular variance, which is the proper way of
dealing with a periodic variable in statistics. With this alterna-
tive standpoint, the usual form of the uncertainty relation, viz,
12 Â12 B̂ ≥ |〈[ Â, B̂]〉|2/4, becomes12 Ê 12 L̂ ≥ 〈Ê 〉|2/4.

Before we proceed with a systematic treatment, let us examine
a natural choice for the input state: the two-mode coherent state
|αp , αs 〉. A direct calculation gives

12
coh L̂ =

|αp|
2
+ |αs|

2

4
=

N̄
4
,

〈Ê 〉coh ' e i(φp−φs )

(
1−

1

8|αp|
2

)(
1−

1

8|αs|
2

)
, (7)

with ασ = |ασ|e iφσ , and in the second equation, we have
assumed large |ασ|. In the optimal choice |αp| = |αs| =

√
N̄/2,

this result boils down to 12
coh Ê ' 1/N̄, and, therefore, in the

limit N̄� 1, these states do saturate the uncertainty relation
(10). As could be anticipated, this is the standard quantum
limit [17] for ellipsometry, i.e., the uncertainty of ρ scales with
1/
√

N̄. This statement follows from the fact that while neither
〈Ê 〉coh nor 〈 P̂ 〉coh scales with N̄, the uncertainties 1coh Ê and
1coh P̂ do scale as 1/

√

N̄. Therefore, the accuracy of the relative
phase, which renders the accuracy of L̂ , fully depends on the
number of photons. In this way, setting the accuracy of the
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relative phase fixes the average number of photons, leaving no
room for improvements of the scaling property of12

coh L̂ .
The treatment in the previous paragraph assumed that the

input state is separable. One might naively expect that entan-
gling the p and s modes would make it possible to bypass
the standard quantum limit. In this vein, a natural choice
is a two-mode squeezed state, |αp , αs , ζ 〉, which is a displaced
squeezed vacuum with a complex squeezing parameter ζ = se iθ .
Using the results for the second-order moments of the photon
numbers [18], we get

12
sq L̂ =

1

4

[
(|αp|

2
+ |αs|

2) cosh(2s)− 2|αpαs| cos(δφ) sinh(2s)
]
,

(8)
with δφ = φp + φs − θ . In the optimal setting, when δφ = 0

and |αp | = |αs | =

√
N̄/2− sinh2 s, we obtain

12
sq L̂ =

1

4
(N̄ − 2sinh2s)e−2s .

N̄
4

e−2s,

〈Ê 〉sq ' e i(φp−φs )
(
1− 2sinh2s/N̄

)
, (9)

where in the second equation, we have utilized the approxima-
tion Ê ' 2â p â †

s /N̄, which works well for large squeezing. In
this regime, we effectively get 12

sq Ê = e 2s/N̄, confirming that
the uncertainty relation (10) is saturated. In interferometry,
squeezed states allow us to beat the standard quantum limit by
reducing the noise in one quadrature at the expense of increasing
the noise in the conjugate quadrature [19]. Much in the same
way, Eq. (9) shows that we can control the quantum-noise
balance between Ê and L̂ . For an experimental scheme, one
can perform a conventional analysis of the sensitivity of the
parameters to be estimated to the noise in the measured ψ and
1. Redistributing the noise between these variables is a resource
to improve practical precision.

Actually, ellipsometric measurements are limited by shot
noise, particularly at low light intensities or when using ellip-
someters employing a nulling technique. The use of entangled
beams in ellipsometry has been previously reported [20], and it
was shown how this technique can improve present standards.

The two previous examples of coherent and squeezed
states evidence that the uncertainty principle can be sat-
urated in the limit of intense fields N̄→∞. However,
it is well known that for the general case of finite N,
this bound cannot be attained exactly. Therefore, we
modify our strategy and look instead for normalized
states that minimize the uncertainty product 12 Ê 12 L̂
under the condition that 〈Ê 〉 and 〈L̂〉 are fixed (albeit a
priori unknown) parameters.

We approach this problem by the method of undetermined
multipliers. The linear combination of variations leads to the
basic equation [15]

[L̂2
+µL̂ +

1

4
(q ∗ Ê + q Ê †)]|9〉 = a |9〉, (10)

where µ, q , and a are Lagrange multipliers. The factor of 1/4
was included for convenience. We solve this equation in the
phase representation 9(φ)= 〈φ|9〉. For simplicity, we also
take q to be real and nonnegative, since its argument is the phase
of 〈Ê 〉 and, as such, can be reintroduced whenever necessary.

With the change of variable 9(φ)= e iµη9̃(η), with η= φ/2,
we arrive at the Mathieu equation [21]

d29̃(η)

dη2
+ [ã − 2q cos(2η)] 9̃(η)= 0, (11)

with ã = 4a +µ2. The variableη has a domain 0≤ η < 2π and
plays the role of polar angle in elliptic coordinates. The required
periodicity of φ imposes that the only acceptable Mathieu func-
tions are those being periodic with the period ofπ in η. The val-
ues of ã in Eq. (11) that satisfy this condition are the eigenvalues
of this equation.

We have then two families of independent solutions, namely,
the angular Mathieu functions cek(η, q) and sek+1(η, q), with
k = 0, 1, 2, . . ., which are usually known as the elliptic cosine
and sine, respectively. The eigenvalues associated with these
solutions are conventionally denoted as ak(q) and bk+1(q).
Both functions have the period π when their index (k or k + 1,
respectively) is even or period 2π when it is odd. Thus, the
acceptable solutions for our problem are the independent
Mathieu functions of the even order.

Because of the above symmetry properties, we can easily find
that 〈L̂〉 =−µ/2, which further specifies the phase of9(φ) to
be e−i〈L̂〉φ . Finally, we obtain (k = 0, 1, . . .)

9k(φ, q)=
e−i〈L̂〉φ

√
π

{
ce2k(φ/2, q),
se2k+2(φ/2, q), (12)

where the factor 1/
√
π ensures proper normalization on the

interval 0≤ φ < 2π .
We consider only even solutions, although a parallel

treatment can be done for the odd ones. We obtain

12
k L̂ = 1

4

[
A2k(q)− 2q Re2k (q)

]
,

12
k Ê = 1− |22k(q)|2, (13)

where2k(q)= A(2k)
0 (q) A(2k)

2 (q)+
∑
∞

j=0 A(2k)
2 j (q) A(2k)

2 j+2(q)

and the coefficients A(k)j (q) are defined in terms of the expan-

sion cek(η, q)=
∑
∞

j=0 A(k)j (q) cos( jη), so they determine the
Fourier spectrum.

Formula (13) can be studied by means of both numerical
methods and analytical considerations based on asymptotic
expansions of the Mathieu functions. These asymptotic limits
identify the fundamental mode k = 0 as the minimum uncer-
tainty state for all the values of the parameter q , and, henceforth,
90(φ, q) is the solution we were looking for.

The corresponding probability density p(φ)= |90(φ, q)|2

can be approximated by

p(φ)=
1

π
|ce0(φ/2, q)|2 '

1

π

{
exp(−q cos φ), q→ 0,
exp(−

√
q cos φ), q→∞.

(14)
In both limits, this p(φ) may be approximated by a von

Mises distribution, p(φ)∝ exp[−κ cos(φ − φ0)], which is
considered as the circular analog of the Gaussian distribution.
The parameter φ0 is the mean phase, while κ (which is related
directly to q ) is a measure of concentration (i.e., a reciprocal
measure of dispersion). If κ tends to zero, the distribution is
close to uniform, whereas when κ is large, the distribution
becomes very concentrated. This behavior is illustrated in



4610 Vol. 45, No. 16 / 15 August 2020 /Optics Letters Letter

Fig. 1. Probability density of the relative phase for the fundamental
Mathieu wave function 90(φ, q), saturating the uncertainty relation
(10), for two different values of the phase dispersion q . The continuous
lines correspond to the true probability, whereas the dotted lines are
the von Mises approximations as in Eq. (14). In the inset, we show the
Fourier components |9`|

2 corresponding to q = 0.1.

Fig. 1, where we compare p(φ) for two extreme values of q . We
also plot the Fourier components 9` of the state, defined via
Eq. (8). In this way, we have characterized optimal input states
for which the relative phase φ between p and s components is
continuously distributed with probability p(φ).

Most importantly, the uncertainty principle can now be
saturated independently of the value of N̄. The accuracy of the
phase becomes fixed by the choice of q , which is the inverse of
the Gaussian width, while Eq. (13) provides the uncertainty
of L̂ as being the function of |〈e iφ

〉| only. At the level of Ê and
L̂ , the situation seems to be analogous to that of the coherent
and squeezed states. However, the lack of dependence on the
photon number, which now is an external parameter absent
in the wavefunction 90, leads to the Heisenberg scaling [22]:
N̄−2 when it comes to the uncertainty of the modulus12 L̂ and
consequently the 1/N̄ scaling for the uncertainty ofρ.

To conclude, it is interesting to look at the optimal states
discussed thus far from the perspective of polarization squeez-
ing, which can be seen as a continuous-variable polarization
entanglement. For N̄� 1, the standard Stokes operators [23]
can be approximated as Ŝz = L̂ , Ŝ+ = N̄ Ê †, and Ŝ− = N̄ Ê ,
with Ŝ± = Ŝx ± i Ŝy . Polarization squeezing occurs when [24]
N̄12 Ŝz/(|〈Ŝx 〉|

2
+ |〈Ŝy 〉|

2) < 1, which in our context can
be reformulated simply as 12 L̂ < 1/4N̄|〈Ê 〉|2. A glance at
Eqs. (7) and (9) reveals that the coherent states are not polari-
zation squeezed, but the squeezed states |αp , αs , ζ 〉 do present
a substantial amount of polarization squeezing. On the other
hand, the optimal Mathieu beams, 90(φ, q), are polarization
squeezed whenever

√
q < N̄. For them, the average value of the

Stokes vector is given by the free parameters of the state.
The ideal squeezed states require an infinite amount of

energy, and they can therefore not be generated in the labo-
ratory. The squeezed states that can significantly improve the
performance of a delicate measurement, such as in the case of
gravitational wave detection, are always states showing finite
squeezing, which nevertheless may be high. The same is true
here. One purpose in this Letter is to discuss the improvement
such states offer in the case of ellipsometry. Another purpose is
that in this particular application, we found that by using special

states of finite energy, we can do even better than with squeezed
states of the same energy.

In summary, we have investigated how unavoidable quan-
tum noise limits the accuracy of ellipsometric measurements.
Coherent states are shot-noise limited, whereas squeezed states
achieve the Heisenberg scaling only in the limit of very large
N. However, we have found a set of states, with a Mathieu
wave function, that yields the optimal scaling precisely in the
moderate-light regime. This regime has been ignored thus far
by classical analysis, but as quantum technologies improve,
the use of entanglement and squeezing to enhance precision in
ellipsometry is likely to become more widespread.
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