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Kerker effect, superscattering, and scattering dark states in atomic antennas
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We study scattering phenomena such as the Kerker effect, superscattering, and scattering dark states in a
subwavelength atomic antenna consisting of atoms with only electric dipole transitions. We show that an atomic
antenna can exhibit arbitrarily large or small scattering cross sections depending on the geometry of the structure
and the direction of the impinging light. We also demonstrate that atoms with only an electric dipole transition
can exhibit a directional radiation pattern with zero backscattering when placed in a certain configuration. This
is a special case of a phenomenon known as the Kerker effect, which typically occurs in the presence of both
electric and magnetic transitions. Our findings open a pathway to design highly directional emitters, nonradiating
sources, and highly scattering objects based on individually controlled atoms.
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I. INTRODUCTION

Scattering is a fundamental phenomenon in light-matter
interaction, and the scattering cross section is a measure to
describe how strongly an object interacts with incident pho-
tons [1]. The ability to manipulate and control scattering is
an important research goal in optics and atomic physics. In
nanophotonics, the scattering can be controlled by engineer-
ing the geometry of the optical antennas as the canonical
elements of the interaction [2]. In particular, it has been
shown that engineered nanoparticles can exhibit remarkable
scattering phenomena such as directional radiation patterns
with zero backscattering known as the Kerker effect [3–6], the
scattering dark state [7–9], and superscattering [10–12]. To
observe these phenomena, the nanoparticles are designed to
support not only an electric dipole but also a magnetic dipole
and higher-order multipoles. The underlying physics of these
scattering phenomena can be understood from the interference
among the scattered fields of all the induced multipole mo-
ments [3–17].

With the recent developments in manipulating and con-
trolling single atoms and quantum emitters, a new class of
subwavelength antennas consisting of quantum emitters have
been employed in the past decades to control light-matter
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interaction at the atomic scale [18–41]. Here, it should be
borne in mind that atoms arranged in a subwavelength struc-
ture interact with the radiation field cooperatively [42–45].
Hence, although the canonical elements of these systems re-
main atoms with only electric dipole transitions, it turns out
that the entire structure can be modeled as a single antenna
that effectively exhibits both electric and magnetic multipoles
[38,39] and thus enables the control of light scattering (see
Fig. 1).

In this paper, we treat the situation of a few atoms in
simple geometries and show that the scattering of the struc-
ture can be significantly different from the scattering of the
individual atoms (see Fig. 1). Each atom supports only an
electric dipole transition with a maximum scattering cross
section of 3λ2/2π [46–49]. Using the multipole expansion
[14–16], the effective electric and magnetic multipole mo-
ments of the atomic antenna can be found from the induced
current J(r, ω). By employing these multipole moments, we
show in the following that it is possible to tailor the scattering
of the structure to achieve extremely large or small scattering
cross sections (the so-called superscattering and scattering
dark state, respectively), as well as the Kerker effect. Our
proposed antennas can be realized experimentally using the
available experimental methods in cold atom manipulation
[37,40].

II. ATOMIC ANTENNA IN THE
WEAK-EXCITATION LIMIT

The atoms in Fig. 1 are modeled as two-level systems
and are arranged such that the overall size of the antenna is
smaller than the wavelength of the incident light. We assume
an isotropic and linear atomic response, i.e., a weak excitation
such that the atomic transition is far below the saturation limit.
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FIG. 1. Main idea of this work. Sketch of an atomic antenna
composed of a few atoms with only electric dipole transition mo-
ments. The overall size of the antenna D is smaller than the
wavelength of light. The induced polarization current J(r, ω) of the
antenna can be found from the induced dipole moment of the atoms,
p(ri ) placed at ri. The induced current is decomposed into multipole
moments which are used to control the scattering cross section of the
structure. The excitation and the position of the atoms can be tailored
to achieve arbitrary induced electric and magnetic multipoles. Thus
it is possible to control the scattering and achieve scattering dark
states, superscattering, and the Kerker effect. The maximum scat-
tering cross section of a single atom, 3λ2/2π , is considered as the
measure.

Therefore the electric polarizability of each atom amounts
to α(ω) = −(α0�0/2)/(δ + i�0/2), where α0 = 6π/k3 (k is
the wave number of the resonant light), �0 is the radiative
decay rate of the atomic transition at frequency ωa, and δ =
ω − ωa � ωa represents the frequency detuning between the
illumination and the atomic resonance [47,50]. The antenna is
illuminated by a plane wave Einc(r) = E0eik·reE propagating
in the k direction, where eE is the unit vector in the electric
field direction and E0 is the electric field amplitude. The
extinction cross section is defined as

Cext = k

ε0|E0|2
N∑

i=1

Im[p(ri ) · E∗
inc(ri )], (1)

where ∗ indicates the complex conjugate and p(ri ) is the
induced dipole moment of the ith atom. The optical theorem
indicates that for atoms without any nonradiative transitions,
the extinction and scattering cross sections are identical, i.e.,
Csca = Cext [47,51]. The dipole moment of the atoms can
be calculated from the following coupled-dipole equations
[52,53]:

p(ri ) = ε0α

(
Einc(ri ) +

N∑
j=1, j �=i

G(ri, r j )p(r j )

)
, (2)

where G(ri, r j ) is Green’s tensor [54,55]. Equation (2) can be
solved numerically for an arbitrary geometry of the atoms and
the driving field. We note that this theoretical model captures
the essence of the experimental results for cold atomic arrays
[37].

III. SUPERSCATTERING

In general, the maximum scattering cross section of an
isotropic scatterer is Cmax

sca, j = (2 j + 1) λ2

2π
, where j is the or-

der of the multipole; e.g., j = 1, 2, and 3, for dipoles,

FIG. 2. Superscattering. Maximum scattering cross section of N
atoms normalized to λ2/2π as a function of the distance between the
atoms l . The gray line shows the maximum scattering cross section
for N noninteracting atoms, i.e., N × 3λ2

2π
. The geometry of the atoms

and the driving field is shown in the inset. The maximum scattering
occurs at different frequency detunings for each l .

quadrupoles, and octupoles, respectively [10,11]. For exam-
ple, the maximum scattering cross section of a single dipolar
scatterer (such as the two-level atom considered in this paper)
occurs at the resonance frequency and is limited to 3λ2/2π

[48,56]. However, it is possible to engineer the structure of
the scatterer to align the resonance frequencies of differ-
ent multipoles and thus enhance the scattering cross section
dramatically [10,11]. Here, we show that a particular ar-
rangement of N atoms can exhibit a scattering cross section
significantly larger than N × 3λ2

2π
, although each individual

atom supports only an electric dipole transition.
Consider N atoms equally placed on the z axis and illu-

minated by an x-polarized plane wave propagating in the z
direction as shown in the inset of Fig. 2. By using Eqs. (1)
and (2), we plot the normalized maximum scattering cross
section as a function of the distance between the atoms l .
At large atomic separations, i.e., l > λa, the atoms are nearly
noninteracting, and the maximum cross section is limited to
N × 3λ2

2π
(see the gray line in Fig. 2). However, the atomic

antenna exhibits superscattering at one particular atomic spac-
ing, l ≈ 0.2λa. Notably, the maximum scattering cross section
for N = 5 is approximately 15 × 3λ2

2π
. We note that an even

larger scattering cross section for a subwavelength atomic
antenna can be achieved with a three-dimensional (3D) atomic
arrangement (see Appendix B for details).

In order to understand the nature of this enhancement in
the scattering cross section, we examine the case of an atomic
tetramer with N = 4 [see the inset of Fig. 3(a)]. The nor-
malized scattering cross section as a function of frequency
detuning and distance l is shown in Fig. 3(a). The tetramer
exhibits four modes [Fig. 3(b)]. M1 is a superradiant mode,
where all dipoles oscillate in phase, and exhibits a large
linewidth compared with the natural linewidth of an isolated
atom [25,42–45]. In contrast, M4 is subradiant with a very
narrow linewidth.

Figure 3(c) shows the normalized scattering cross sec-
tion as a function of frequency detuning for l = 0.2λa

and the contribution of each multipole moment to the
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FIG. 3. Superscattering in a tetramer. (a) Scattering cross section normalized to λ2/2π and shown in logarithmic scale. Inset: illustration of
an atomic tetramer placed at r1,2 = ±l/2ez, r3,4 = ±3l/2ez. (b) The tetramer exhibits four modes, M1 to M4. Total magnetic field distribution
Ht at ωSS, normalized to the incident magnetic field H0. (c) Normalized scattering cross section of different electric and magnetic multipole
moments as a function of frequency detuning for l ≈ 0.2λa. ED (MD), EQ (MQ), EO (MO), and EH (MH) indicate the electric (magnetic)
dipole, quadrupole, octupole, and hexadecapole moments, respectively. (d) and (e) Real part of the normalized total electric field distribution
Ex

t (the x component) and normalized scattered field distribution |Esca| at ωSS, respectively (see the angle-dependent scattered power in
Appendix B).

scattering cross section. Remarkably, the maximum scattering
cross sections of different multipoles occur approximately at
the same frequency, which is labeled by ωSS in Fig. 3(c). The
total scattering cross section is a superposition of the cross
sections associated with effective electric and magnetic dipole,
quadrupole, and octupole moments. Therefore the scattering
cross section of the tetramer far exceeds the scattering cross
section of a single atom. The strong magnetic field in Fig. 3(b)
testifies to the induced magnetic multipolar response at ωSS.
Using Esca (r) = ∑N

i=1 G(r, ri )p(ri ), the scattered and the to-
tal (sum of incident and scattered) fields of the atomic antenna
in free space can be calculated at r. Figures 3(d) and 3(e) show
the scattered and total field distribution at the superscattering
frequency ωSS. The scattering field is very large even at the
far field of the tetramer (�λ), and the total field is strongly
perturbed [Fig. 3(d)]. Therefore a higher extinction can be
achieved compared with that of a single atom [48,57].

IV. SCATTERING DARK STATES

While each atom is excited close to the resonance and
scatters the photons individually, it is possible, in some certain
conditions, to achieve a negligible overall scattering from the
structure. This phenomenon, known as the scattering dark
state (SDS), has been investigated in nanoparticles [7–9]. In an

SDS, the current distribution, and hence the electromagnetic
field, is nonzero or even very large in the vicinity of the
structure. However, similar to a nonradiating source [7], the
current distribution does not radiate to the far field. Therefore
such a structure becomes invisible under the conditions of an
SDS [9]. Here, we study scattering dark states in an atomic
antenna with a nonzero induced current and very large near
fields. Consider an atomic trimer placed on the x axis and
illuminated by an x-polarized plane wave propagating in the
z direction [shown in the inset of Fig. 4(a)]. The extinction
cross section of the atomic trimer can be calculated using
Cext = k Im(αsum ), where αsum reads as (see Appendix C)

αsum =
3∑

i=1

αi = α
ε0α(β2 − 4β1) − 3

ε0α(2ε0αβ2
1 + β2) − 1

(3)

and where αi is the effective electric polarizability of each
atom at its position. β1 = Gxx

12(kl ) and β2 = Gxx
13(2kl ) are

components of Green’s tensor (see Appendix C). The nor-
malized scattering cross section as a function of frequency
detuning and distance between the atoms l is plotted in
Fig. 4(a). The trimer can support multiple modes. How-
ever, only two modes can couple to the driving plane
wave. These modes are subradiant and superradiant modes
[18,19,21,22,24,25,42–45] and are labeled by M1 and M2
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FIG. 4. Scattering dark state as a nonradiating source. (a) Scattering cross section (normalized to λ2/2π and shown in logarithmic scale)
as a function of frequency detuning and the distance between the atoms l . Inset: schematic drawing of an atomic trimer composed of atoms at
r1,3 = ∓lex , r2 = 0 and the plane-wave excitation. (b) Normalized scattering cross section as a function of frequency detuning for l = λa/15.
The dashed line shows the contribution of the electric dipole moment. The trimer exhibits two modes M1 and M2 when illuminating by a plane
wave. (c) Real and imaginary parts of the induced dipole moment of each atom as a function of frequency detuning. At ωSDS, the individual
atoms have nonzero dipole moments. (d) Real part of the normalized total field distribution Ex

t at the frequency of the scattering dark state
ωSDS. (e) Normalized scattered field distribution |Esca| at ωSDS (shown in logarithmic scale).

in Fig. 4, respectively. Figure 4(b) shows the normalized
scattering cross section as a function of frequency detuning
for l = λa/15. At the scattering dark state, ωSDS ≈ 28.5�0,
the trimer is transparent, and we observe that the scattering
cross section is significantly suppressed by five orders of mag-
nitude compared with the on-resonance excitation. Therefore
the trimer becomes invisible to the incident field at the scat-
tering dark state as the scattered field of the atoms interferes
destructively in the far field. By using a multipole expansion
of the induced current at r = 0, we show that the atomic trimer
supports only an electric dipole moment, i.e., px

eff ≈ ε0E0αsum

[Fig. 4(b)], and all the higher multipoles are negligible (see
Appendix C). Note that at ωSDS all the effective multipole
moments vanish, which is the condition for the SDS [7]. While
the scattered field is nearly zero, the induced dipole of each
atom and the induced current are not negligible as shown in
Fig. 4(c).

At the transparency frequency ωSDS, we observe an
extremely small perturbation to the incident plane wave
[Fig. 4(d)]. Remarkably, the field distribution at ωSDS implies
that the electromagnetic field generated inside the scatterer is
nonzero, and indeed, it is one order of magnitude larger than
the incident electric field [Fig. 4(e)]. At ωSDS, the induced cur-
rent of the trimer is a nearly nonradiating source. In Appendix
C, we investigate antennas consisting of a larger number of

atoms. We show that for an antenna with n excited modes
there are n − 1 scattering dark states. In other words, only
one resonant mode radiates, while the other resonances do
not radiate because of vanishing induced multipole moments
[7,9]. This effect is reminiscent of the situation of optical
cavities [58]. Note that the scattering dark states depend on
the geometry of the atomic antenna and the polarization of the
impinging light.

V. KERKER EFFECT

An atom or a scatterer with only an electric dipole tran-
sition has an omnidirectional radiation pattern, i.e., scatters
lights in both forward and backward directions. However,
a Huygens’ scatterer, a scatterer with balanced electric and
magnetic dipole moments, can exhibit a directional radiation
pattern with zero backscattering. This effect is also known
as the first Kerker condition [3]. The directional radiation
with zero backscattering relies on constructive and destructive
interference of the scattered field of the induced electric and
magnetic dipole moments in the forward and backward di-
rections, respectively. The Kerker condition has been studied
in engineered high-index dielectric and metallic nanoparticles
[3,5]. In the following, we show that an atomic trimer in an
equilateral triangle configuration [see the inset of Fig. 5(a)]
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FIG. 5. Kerker effect. (a) Total scattering cross section normalized to λ2/2π as a function of the distance between the atoms. The inset
illustrates an atomic trimer in an equilateral triangle composed of atoms at r1,2 = ±l/2ex −

√
3

6 lez, r3 =
√

3
3 lez. (b) Normalized total magnetic

field distribution at ωK. The trimer exhibits two modes M1 and M2. (c) Real and imaginary parts of the induced electric px
eff and magnetic

my
eff dipole moments calculated from Eq. (4). The Kerker condition is met at ωK where the real and imaginary parts of the induced dipole

moments satisfy the condition px
eff = my

eff/c, independently. (d) Normalized forward-scattering (red line) and backward-scattering (blue line)
cross section at l = 0.1λa calculated from Eq. (5). Inset: the radiation pattern at the Kerker condition, which shows zero backward scattering.

can satisfy the first Kerker condition, although the con-
stituent atoms support only an electric dipole transition. The
normalized scattering cross section as a function of frequency
detuning and the distance between the atoms l is shown in
Fig. 5(a). The trimer exhibits two modes as shown with M1

and M2 in Fig. 5(b). We will show below that the M2 mode
exhibits a strong magnetic response induced by the electric
current, i.e., J(r, ω) [see the magnetic field enhancement in
Fig. 5(b)] and satisfies the Kerker condition. By decreasing
the distance l , the separation between the two modes increases
because of the strong near-field coupling.

To understand the underlying physics of the Kerker con-
dition, we note that the proposed structure supports both
effective electric and magnetic dipole moments, which are
given by (see Appendix D)

px
eff = (

2px
1 + px

3

)
j0(u) + 1

4

(
5px

1 − 2px
3

)
j2(u),

my
eff = 3i

2
c
[(

px
1 − px

3

)
j1(u) +

√
3pz

2 j2(u)
]
, (4)

where jn(u) are spherical Bessel functions, u = √
3kl/3,

and c is the speed of light in vacuum. px
1,3 and pz

2 are
the electric dipole moments of the individual atoms, along
the x and z axes, and are calculated from Eq. (2). Note
that in the derivation of Eq. (4), we used px

1 = px
2 and

pz
1 = −pz

2 due to the symmetry of the trimer (see Appendix

D). Then, the forward- and backward-scattering cross sec-
tions for this atomic antenna can be calculated from (see
Appendix D)

Csca = k4
∣∣px

eff ± my
eff/c

∣∣2
/
(
4πε2

0 |Einc|2
)
, (5)

where + and − are used for forward- and backward-scattering
cross sections, respectively. Equation (5) shows clearly that
the first Kerker condition is fulfilled when px

eff = my
eff/c. Fig-

ure 5(c) plots the real and imaginary parts of the effective
electric and magnetic dipole moments. It can be seen that at
the Kerker frequency ωK, both the real and imaginary parts of
the induced dipole moments satisfy the Kerker condition inde-
pendently. Hence, at ωK, the forward scattering is significantly
enhanced, while the backward scattering is considerably sup-
pressed [see Fig. 5(d)]. We note that the generalized Kerker
effect with balanced electric dipole and quadrupole moments
can be achieved using a 3D atomic antenna (see Appendix E).

A subwavelength ensemble of randomly distributed atoms
scatters less than a single atom close to resonance [59]. How-
ever, we showed that by arranging the atoms in particular
geometries, one can control scattering to achieve extremely
small or large scattering cross sections, the so-called scat-
tering dark state and superscattering, respectively. Moreover,
we demonstrated that a particular geometry of the atoms ful-
fills the Kerker condition and scatters light in the forward
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direction. We showed that these geometries exhibit higher-
order electric and magnetic multipole moments, although the
individual atoms support only electric dipole transitions. We
have employed these induced multipole moments to con-
trol the scattering. The treatment used in this paper is an
excellent approximation to the full quantum model in the
weak-excitation regime. Therefore our considerations can also
be realized in the quantum regime and pave the way towards
the generation and manipulation of photonic quantum states,
e.g., realization of single-photon emitters [60,61] and quan-
tum memory [62,63].
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APPENDIX A: ATOMIC POLARIZABILITY AND
COUPLED-DIPOLE EQUATIONS

Let us consider an atomic antenna composed of natural
atoms with only electric dipole transition moments and illu-
minated by a plane wave (see Fig. 1). The atoms are arranged
at small distances such that the entire size of the antenna
is smaller than the wavelength of the light, i.e., D < λ. We
consider the weak-excitation limit where the atomic response
is isotropic and linear. The electric polarizability of each atom
amounts to α(ω) = −(α0�0/2)/[δ + i(�0 + �nr )/2], where
�0 is the radiative linewidth of the atomic transition at
frequency ωa, δa = ω − ωa � ωa represents the frequency
detuning between the illumination and the atom, and α0 =
6π/k3 (k is the wave number) [46,47]. We assume elastic
scattering events, and therefore the nonradiative decay rate is
zero, i.e., �nr = 0. The induced polarization current density
for the atomic antenna can be written as

J(r, ω) = −iω
N∑

i=1

p(ri )δ(r − ri ), (A1)

where δ is the Dirac delta function and p(ri ) is the induced
electric dipole moment of the ith atom placed at r = ri (see
Fig. 1). In Eq. (A1), we assumed e−iωt as a time-harmonic
variation. The induced dipole moment of the ith atom p(ri ) =
ε0αEloc(ri ) can be obtained by using the coupled-dipole equa-
tions [38,52,53]

p(ri ) = ε0αi

[
Einc(ri ) +

∑
i �= j

G(ri, r j )p(r j )

]
, (A2)

where Einc(ri ) is the incident field at the atom position ri,
αi is the atomic polarizability, and

∑
i �= jG(ri, r j )p(r j ) is the

interaction field at r = ri created by all the other atoms. The
total field at the position of the ith atom Eloc(ri ) is the sum
of the incident field and the scattered field from the other

atoms. The electric dipole at position r j radiates an electro-
magnetic field which when measured at ri can be calculated
from G(ri, r j )p(r j ), where G(ri, r j ) is Green’s tensor and
reads as [54,55]

G(ri, r j ) =
3

2α0ε0
eiζ [g1(ζ )¯̄I + g2(ζ )nn], (A3)

where ¯̄I is the identity dyadic, n = ri−r j

|ri−r j | , and ζ =
|k(ri − r j )|. The Cartesian components of Green’s tensor are
given by

Gμν (ζ ) = 3

2α0ε0
eiζ

[
g1(ζ )δμν + g2(ζ )

ζμζν

ζ 2

]
, (A4)

where

g1(ζ ) =
(

1

ζ
− 1

ζ 3
+ i

ζ 2

)
,

g2(ζ ) =
(

− 1

ζ
+ 3

ζ 3
− 3i

ζ 2

)
(A5)

and where μ, ν ∈ x, y, z.
For atoms with zero nonradiative decay �nr = 0, we get

Im[1/α] = −1/α0. Using conservation of energy, one can
show that the scattered power is equal to the extracted power
Psca = Pext. Thus the scattering cross section and the extinc-
tion cross section of the atoms are identical, Csca = Cext, and
the extinction cross section reads as [38,47,49,53]

Cext = k

ε0|E0|2
N∑

i=1

Im[p(ri ) · E∗
inc(ri )], (A6)

where the extinction cross section Cext = Pext/I0 is defined as
the ratio of the extracted power Pext to the incident intensity I0.

APPENDIX B: SUPERSCATTERING

In this appendix, we study superscattering in one-
dimensional and three-dimensional subwavelength atomic
antennas.

1. One-dimensional subwavelength antenna

Let us consider an atomic pentamer with N = 5 [see the
inset of Fig. 6(a)]. The normalized scattering cross section
as a function of frequency detuning ω − ωa and distance l
is shown in Fig. 6(a). The pentamer exhibits five modes [see
the inset of Fig. 6(a)]. M1 is a superradiant mode, where
all dipoles oscillate in phase, and exhibits a large linewidth
compared with the natural linewidth of an isolated atom.
In contrast, M5 is subradiant with a very narrow linewidth.
Figure 6(b) shows the normalized scattering cross section
as a function of frequency detuning for lSS ≈ 0.2λa and the
contribution of each multipole moment to the scattering cross
section. The maximum scattering cross sections of different
multipole moments occur, approximately, at the superscat-
tering frequency ωSS. The total scattering cross section is a
superposition of the cross sections associated with effective
multipole moments. Therefore the scattering cross section of
the pentamer far exceeds the scattering cross section of a
single atom. Figures 6(c) and 6(d) depict the induced dipole
of each atom. At ωSS, the induced dipole moment of each
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FIG. 6. Superscattering in a pentamer. (a) Scattering cross section normalized to λ2/2π and shown in logarithmic scale. The inset illustrates
the atoms placed at r1,5 = ∓2lez, r2,4 = ∓lez, r3 = 0ez. (b) Normalized scattering cross section of different electric and magnetic multipole
moments as a function of frequency detuning for lSS ≈ 0.2λa. ED (MD), EQ (MQ), EO (MO), EH (MH), and ET (MT) indicate the electric
(magnetic) dipole, quadrupole, octupole, hexadecapole, and triakontadipole moments, respectively. (c) and (d) Real and imaginary parts of the
induced dipole moment of each atom as a function of frequency detuning at lSS. (e) Total magnetic field distribution Ht at ωSS, normalized
to the incident magnetic field H0. (f) and (g) Real part of the normalized total electric field distribution Ex

t (the x component) and normalized
scattered field distribution |Esca| at ωSS, respectively.

atom is at resonance. Each dipole is out of phase with respect
to neighboring atoms, which explains the strong magnetic
field in Fig. 6(e). This strong magnetic field testifies that the
pentamer exhibits an induced magnetic multipolar response at
ωSS. Figures 6(f) and 6(g) show the scattered and total (sum of
incident and scattered) field distribution at the superscattering
frequency ωSS. The scattering field is very large even at the far
field of the pentamer, and the total field is strongly perturbed.
Therefore a higher extinction can be achieved compared with
that of a single atom.

2. Three-dimensional subwavelength antenna

In the main text, we discussed superscattering from a
one-dimensional array of atoms. In this section, we con-
sider superscattering from higher-dimensional subwavelength
atomic structures and show that even larger scattering cross
sections can be achieved compared with the one-dimensional
antenna. Figure 7 shows the scattering cross section normal-
ized to λ2/2π as a function of frequency detuning for different
layers of 2 × 2 atoms. Ns is the number of layers. It can be
seen that the scattering cross section of the 3D structure is
significantly larger than that of a single atom, e.g., Cmax

sca ≈
28 × 3λ2

2π
for Ns = 4 although the 3D antenna is composed of

N = 16 atoms (see the inset of Fig. 7).
Figure 8(a) shows a three-dimensional subwavelength

antenna composed of N = 12 atoms, i.e., Ns = 3. The normal-

ized scattering cross section of the 3D antenna as a function
of frequency detuning and the contribution of each multipole
moment to the scattering cross section is shown in Fig. 8(b).
The total scattering cross section is a superposition of the
cross sections associated with effective multipole moments.
At ωSS, the antenna exhibits a strong electric and magnetic

FIG. 7. Superscattering in a three-dimensional subwavelength
antenna. Scattering cross section normalized to λ2/2π as a function
of frequency detuning ω − ωa for different layers of 2 × 2 atoms, i.e.,
Ns = 1, 2, 3, 4 (see insets), where lx = ly = 0.8λa and lz = 0.2λa.

Note that the size of the antenna is smaller than the wavelength
[lx, ly, (Ns − 1) × lz < λ]. The insets illustrate the three-dimensional
subwavelength antenna for Ns = 1 and Ns = 4.
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FIG. 8. Superscattering in a three-dimensional subwavelength
antenna, Ns = 3. (a) A three-dimensional subwavelength antenna
composed of N =12 atoms (Ns = 3), where lx = ly = 0.8λa and lz =
0.2λa. (b) Normalized scattering cross section of different electric
and magnetic multipole moments as a function of frequency detun-
ing. ED (MD), EQ (MQ), EO (MO), EH (MH), and ET (MT) indicate
the electric (magnetic) dipole, quadrupole, octupole, hexadecapole,
and triakontadipole moments, respectively. (c) and (d) Real part of
the normalized total electric field distribution Ex

t (the x component)
and normalized scattered field distribution |Esca| at ωSS, respectively.

response, which leads to a very large scattering cross section
Cmax

sca ≈ 20 × 3λ2

2π
. Figures 8(c) and 8(d) show the scattering

and total (sum of incident and scattered, x component) field
distribution at the superscattering frequency ωSS. The scatter-
ing field is very large even at the far field, and the total field is
strongly perturbed [Fig. 8(c) and 8(d)].

3. Angular dependence of scattered power

In this section, we study the angular dependence of
scattered power for one-dimensional and three-dimensional
subwavelength antennas. Figure 9(a) shows the normalized
scattered power as a function of angle in the xz plane at the
superscattering frequencies for a one-dimensional subwave-
length antenna for different numbers of atoms, N = 2, 3, 4, 5.
By increasing the number of atoms, the backscattering cross
section (θ = 180◦) decreases for a larger number of atoms. A
similar result is shown in Fig. 9(b) for the three-dimensional
subwavelength antenna.

FIG. 9. Normalized scattered power as a function of angle in
the xz plane at the superscattering frequencies: (a) one-dimensional
subwavelength antenna, where l = 0.2λa and (b) three-dimensional
subwavelength antenna, where lx = ly = 0.8λa and lz = 0.2λa.

APPENDIX C: SCATTERING DARK STATES

1. Atomic trimer

In this section, we derive effective multipole moments of
an atomic trimer and its scattering cross section. The atomic
trimer is placed on the x axis with atoms at r1,3 = ±lex, r2 =
0 and is illuminated by an x-polarized plane wave propagating
in the z direction [see the inset of Fig. 4(a)]. The induced
displacement volume current density for the atomic trimer can
be written as

J(r, ω) = −iω
3∑

i=1

px
i δ(r − ri )ex, (C1)

where the induced electric dipole moment of each atom can
be calculated using the coupled equation [Eq. (A2)] and read
as

px
1 = px

3 = −ε0α
ε0αβ1 + 1

ε0α
(
2ε0αβ2

1 + β2
) − 1

E0,

px
2 = ε0α

ε0α[β2 − 2β1] − 1

ε0α
(
2ε0αβ2

1 + β2
) − 1

E0, (C2)

where px
1 = px

3 due to the symmetry [see the inset of Fig. 4(a)]
and β1 and β2 are defined by

β1
Δ= Gxx

12(ζ = kl ) = 3

2α0ε0
eikl g1(kl ),

β2
Δ= Gxx

13(ζ = 2kl ) = 3

2α0ε0
ei2kl g1(2kl ). (C3)
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FIG. 10. Scattering dark state as a nonradiating source. (a) and (c) Scattering cross section (normalized to λ2/2π and shown in logarithmic
scale) as a function of frequency detuning and the distance between the atoms l for a pentamer (N = 5) and a heptamer (N = 7), respectively.
Insets: schematic drawings of the antenna and the plane-wave excitation. (b) and (d) Normalized scattering cross section as a function of
frequency detuning for l = λa/15, for a pentamer and a heptamer, respectively.

Using Eqs. (A6) and (C2), we obtain the scattering cross
section of the trimer [i.e., Eq. (3) of the main text]:

Csca = Cext = k

ε0|E0|2
Im

[
3∑

i=1

piE
∗
inc(ri )

]

= k Im

[
α

ε0α(β2 − 4β1) − 3

ε0α(2ε0αβ2
1 + β2) − 1

]
. (C4)

Note that for atoms with zero nonradiative decay, the scatter-
ing cross section and the extinction cross section of the atomic
antenna are identical, Csca = Cext.

2. Multipole expansion at the center of the atomic trimer

One can consider the trimer as a single antenna, effectively.
The induced effective electric dipole moment of the trimer can
be obtained using the multipole expansion at the center of the
trimer, i.e., r = 0, and reads as [14–16]

pβ

eff = − 1

iω

{∫
dvJβ j0(kr)

+k2

2

∫
dv

[
3(r · J)rβ − r2Jβ

] j2(kr)

(kr)2

}
, (C5)

where J is the induced displacement volume current in
Eq. (C1) and dv is the volume integral dv = dxdydz in Carte-
sian coordinates. β = x, y, z and jn(kr) are spherical Bessel
functions. Now by substituting Eq. (C1) into Eq. (C5), we get

(peff = px
effex)

px
eff = − 1

iω

{∫
Jx j0(kr)dv

+k2

2

∫
dv

[
3(r · J)x − r2Jx

] j2(kr)

(kr)2

}

= − 1

iω

∫
Jx

[
j0(kr) + 1

2

(
3

x2

r2
− 1

)
j2(kr)

]
dv

= [
px

1 + px
3

]
[ j0(kl ) + j2(kl )] + px

2

= ε0αE0
ε0αβ2 − 2ε0αβ1 − 1

ε0α
[
2ε0αβ2

1 + β2
] − 1

−2ε0αE0
(ε0αβ1 + 1)[ j0(kl ) + j2(kl )]

ε0α
[
2ε0αβ2

1 + β2
] − 1

. (C6)

Note that all the higher-order multipoles are negligible for
kl � l . Using Eq. (A6), we calculate the extinction (scatter-
ing) cross section of the trimer

Csca = Cext ≈ k

ε0|E0|2
Im

[
px

eff E
∗
inc(r = 0)

]

≈ k Im

[
α

ε0α(β2 − 4β1) − 3

ε0α
(
2ε0αβ2

1 + β2
) − 1

]
. (C7)

Clearly, Eq. (C7) is identical to Eq. (C4), and one can con-
clude that the trimer only exhibits an effective electric dipole
moment for kl � 1. In Eq. (C7), we used the long-wavelength
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approximation, i.e., kl � 1, where the spherical Bessel func-
tions can be approximated by j0(kl ) ≈ 1 and j2(kl ) ≈ 0. Thus
the induced electric dipole moment can be written as (px

eff ≈
ε0E0αsum)

px
eff ≈ ε0αE0

ε0α(β2 − 4β1) − 3

ε0α
[
2ε0αβ2

1 + β2
] − 1

. (C8)

3. Atomic pentamer and heptamer

Here, we investigate scattering dark states in one-
dimensional antennas consisting of a larger number of atoms:
a pentamer and a heptamer with five and seven atoms, respec-
tively [see the insets of Figs. 10(a) and 10(c)]. The scattering
cross sections of the atomic pentamer and heptamer are plot-
ted in Figs. 10(b) and 10(d), respectively. An antenna with n
excited modes exhibits n − 1 scattering dark states [see, e.g.,
Figs. 10(b) and 10(d)]. For example, the heptamer exhibits
four modes with three scattering dark states with vanishing
cross sections.

APPENDIX D: KERKER EFFECT

1. Atomic trimer in an equilateral triangle configuration

In this section, we derive Eq. (4) of the main text, i.e., the
induced electric and magnetic dipole moments of an atomic
trimer in an equilateral triangle [see the inset of Fig. 5(a)].
Here, we consider an atomic trimer in an equilateral tri-
angle configuration consisting of three identical atoms with
an electric polarizability α placed at r1,2 = ±l/2ex −

√
3

6 lez,

r3 =
√

3
3 lez. The trimer is illuminated by an x-polarized plane

wave propagating in the z direction [see the inset of Fig. 5(a)].
The induced volume current density for the trimer is

J(r, ω) = −iω
3∑

i=1

pi(ri )δ(r − ri )

= −iω
[
px

1δ(r − r1) + px
2δ(r − r2) + px

3δ(r − r3)
]
ex

−iω
[
pz

1δ(r − r1) + pz
2δ(r − r2)

]
ez, (D1)

where px
1 = px

2 and pz
1 = −pz

2 due to the symmetry of the
trimer.

2. Induced dipole moments

First, let us start by introducing the Green’s function of the atomic trimer [see the inset of Fig. 5(a)]

G12 =

⎡
⎢⎣

Gxx
12 0 0

0 Gyy
12 0

0 0 Gzz
12

⎤
⎥⎦ = 3

2α0ε0
eikl

⎡
⎢⎣

g1 + g2

4 0 0

0 g1 0

0 0 g1

⎤
⎥⎦,

G13 =

⎡
⎢⎣

Gxx
13 0 Gxz

13

0 Gyy
13 0

Gxz
13 0 Gzz

13

⎤
⎥⎦ = 3

2α0ε0
eikl

⎡
⎢⎢⎣

g1 + g2

4 0 −
√

3g2

4

0 g1 0

−
√

3g2

4 0 g1 + 3g2

4

⎤
⎥⎥⎦,

G23 =

⎡
⎢⎣

Gxx
23 0 Gxz

23

0 Gyy
23 0

Gxz
23 0 Gzz

23

⎤
⎥⎦ = 3

2α0ε0
eikl

⎡
⎢⎢⎣

g1 + g2

4 0
√

3g2

4

0 g1 0
√

3g2

4 0 g1 + 3g2

4

⎤
⎥⎥⎦, (D2)

where g1 ≡ g1(kl ) and g2 ≡ g2(kl ) and are given by

g1(kl ) =
(

1

kl
− 1

(kl )3 + i

(kl )2

)
,

g2(kl ) =
(

− 1

kl
+ 3

(kl )3 − 3i

(kl )2

)
. (D3)

Using the coupled-dipole equations [Eq. (A2)] and Green’s tensor [Eq. (D2)], we obtain the induced electric dipole moments
of each atom:

px
1 = px

2 = ε0α
E0

D

[
2ε2

0α
2Gxz 2

13 − ε0αGyy
12 − ε0αGxx

13

(
1 + ε0αGyy

12

)
ei

√
3

2 kl − 1
]
e−i

√
3

6 kl ,

px
3 = −ε0α

E0

D

(
1 + ε0αGyy

12

)[
2ε0αGxx

13 + (1 − ε0αGxx
12)ei

√
3

2 kl
]
e−ik

√
3

6 l ,

pz
2 = −pz

1 = ε0α
E0

D

{
ε0αGxz

13

[
2ε0αGxx

13 + (
1 − ε0αGxx

12

)
ei

√
3

2 kl
]}

e−ik
√

3
6 l , (D4)

where D = 2ε2
0α

2Gxz2
13 (1 − ε0αGxx

12) − (1 + ε0αGyy
12)[1 − ε0α(2Gxx2

13 + Gxx
12)].
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3. Multipole expansion at the center of the atomic trimer

Alternatively, one can consider the trimer as an antenna.
The induced effective electric dipole moment of the trimer is
calculated by applying the multipole expansion at the center
of the trimer r = 0 using Eq. (C5) and peff = px

eff ex + pz
effez.

Now by substituting Eq. (D1) into Eq. (C5), we get

px
eff = − 1

iω

∫
Jx

[
j0(kr) + 1

2

(
3

x2

r2
− 1

)
j2(kr)

]
dv

= [
px

1 + px
2 + px

3

]
j0

(√
3

3
kl

)

+1

8

[
5px

1 + 5px
2 − 4px

3

]
j2

(√
3

3
kl

)
. (D5)

By using px
1 = px

2, we get Eq. (4) of the main text:

px
eff = [

2px
1 + px

3

]
j0(u) + 1

4

[
5px

1 − 2px
3

]
j2(u), (D6)

where u =
√

3
3 kl . Note that using Eq. (D1) and pz

1 = −pz
2, we

obtain

pz
eff = − 1

iω

∫
Jz

[
j0(kr) + 1

2

(
3

z2

r2
− 1

)
j2(kr)

]
dv = 0.

Note that the y component of the electric dipole moment is
also zero, i.e., py

eff = 0.
The induced effective magnetic dipole moment at the center

of the trimer r = 0 reads as [14–16]

mβ

eff = 3

2

∫
dv(r × J)β

j1(kr)

kr
, (D7)

where β = x, y, z. By substituting Eq. (D1) into Eq. (D7), we
obtain

my
eff = 3

2

∫
dv(r × J)y

j1(kr)

kr

= 3

2k

∫ ( z

r
Jx − x

r
Jz

)
j1(kr)dv

= 3i

2
c

[
px

1

2
+ px

2

2
− px

3

]
j1

(√
3

3
kl

)

+i
3
√

3

4
c[pz

2 − pz
1] j2

(√
3

3
kl

)

= 3i

2
c
[
(px

1 − px
3) j1(u) +

√
3pz

2 j2(u)
]
, (D8)

which is Eq. (4) of the main text. Note that one can show
that the x and z components of the magnetic dipole moments
are zero, i.e., mx

eff = 0 and mz
eff = 0. The induced multipole

moments of the trimer in Fig. 5 of the main text are calculated
using Eqs. (D6) and (D8).

APPENDIX E: GENERALIZED KERKER EFFECT

In this Appendix, we study the generalized Kerker effect in
atomic antennas, which occurs among higher-order multipole
moments in addition to the dipole moment [5]. In the gen-
eralized Kerker effect, the destructive interference between
the scattered fields of different multipole moments leads to
zero backscattering. To explore this phenomenon in atomic
antennas, we study a three-dimensional antenna as shown in

FIG. 11. Generalized Kerker effect. (a) Geometry of an antenna
made of eight atoms arranged in subwavelength distances, i.e., lx =
ly = lz = 0.1λa. (b) Normalized scattering cross section of different
electric and magnetic multipole moments as a function of frequency
detuning. (c) Normalized scattered power as a function of angle (xz
plane) and frequency detuning. (d) The radiation pattern at the first
Kerker condition with balanced electric and magnetic dipole mo-
ments. (e) The radiation pattern at the generalized Kerker condition
with balanced electric dipole and quadrupole moments.

Fig. 11(a). The normalized scattering cross section of the 3D
antenna and the angular dependence of scattered power are
shown in Figs. 11(b) and 11(c), respectively. Remarkably, the
antenna exhibits different scattering phenomena at different
frequencies: (i) the Kerker effect at ωK [balanced electric and
magnetic dipole moments; see Figs. 11(b) and 11(d)], (ii) the
generalized Kerker effect at ωGK [balanced electric dipole and
quadrupole moments; see Figs. 11(b) and 11(e)], and (iii) a
scattering dark state at ωSDS [vanishing electric and magnetic
multipole moments; see Fig. 11(b)]. Note that the generalized
Kerker effect occurs at two different frequency detunings.

APPENDIX F: RADIATION PATTERN

Having the induced multipole moments of the trimer, i.e.,
Eqs. (D6) and (D8), the far field of an atomic antenna can be
found using [5,55]

EED = k2

4πε0

eikr

r
px(−sinϕeϕ + cosθcosϕeθ ),

EMD = k2

4πε0

eikr

r

my

c
(−cosθsinϕeϕ + cosϕeθ ),

EEQ = k2

4πε0

eikr

r

ik

6
Qe

zx[cosθsinϕeϕ − cos2θcosϕeθ ],

EMQ = k2

4πε0

eikr

r

ik

6c
Qm

zy[cos2θsinϕeϕ − cosθcosϕeθ ],

(F1)

where r, θ , and ϕ are the radial distance, polar angle, and
azimuthal angle, respectively. The radiation pattern (∝ |E|2)
in the xz plane, i.e., ϕ = 0, considering the contribution from
all multipole moments (up to magnetic quadrupole), can be
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calculated using the electric field at the far field

E ≈ k2

4πε0

eikr

r

{
pxcosθ + my

c
− ik

6
Qe

xz

(
2cos2θ − 1

)

− ik

6c
Qm

zycosθ

}
eθ . (F2)

For an atomic trimer with λ � l at the M2 mode, i.e., ωK,
the electric and magnetic quadruple moments are negligible,

i.e., Qe
xz ≈ 0 and Qm

yz ≈ 0. Thus the radiation pattern (∝ |E|2)
in Fig. 5(d) is mainly due to the electric and magnetic dipole
moments, and the electric field at the far field reads as

E ≈ k2

4πε0

eikr

r

[
pxcosθ + my

c

]
eθ , (F3)

where px and my for the atomic trimer in Fig. 5 can be obtained
using Eqs. (D6) and (D8), respectively.
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